

TABLE OF CONTENTS

- 1) Introduction to Linux and its history
- 2) Booting process of a linux system
- 3) Linux Kernel
- 4) What is a shell
- 5) Bash Shell
- 6) Anatomy of command
- 7) Let's make our own command

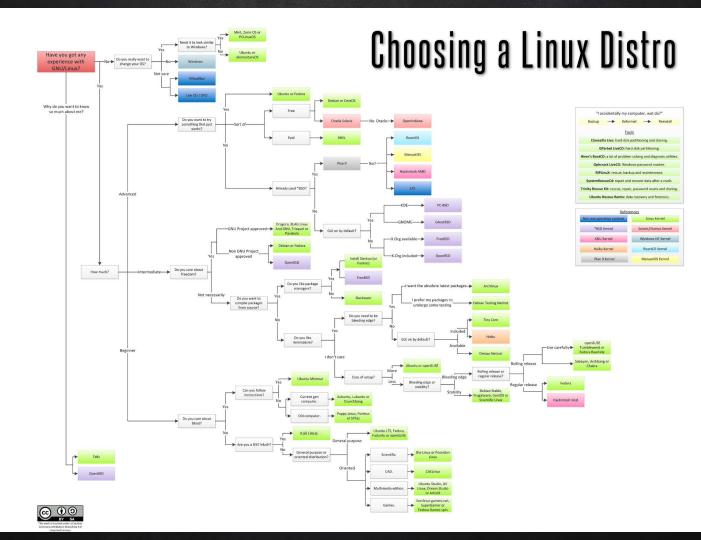
- 8) WildCards in Bash
- 9) Man
- 10) General directory structure in UNIX
- 11) Mounting a device
- 12) > IO Redirection >>
- 13) Permissions, Users & groups
- 14) Super User

INTRODUCTION

Let's start with the first set of slides

LINUX GIVES YOU THE WHOLE HOUSE memecrunch.com

- 1991. Just a hobby, won't be big and professional like GNU Linus Torvalds
- 1992. Linux became open source
- 1996. Tux becomes the logo of linux
- 1997. GNOME project is born
- 2000. Steve jobs made an offer to Linus Torvalds to work on OS X.
- 2004. Ubuntu is released
- 2005. Linus torvalds created git
- 2008. Android v1.0 released


And today

All 500 of the world's fastest supercomputers are running Linux.

Let's see which linux flavor to use.

https://distrowatch.com/dwres.php?resource=popularity

LINUX KERNEL

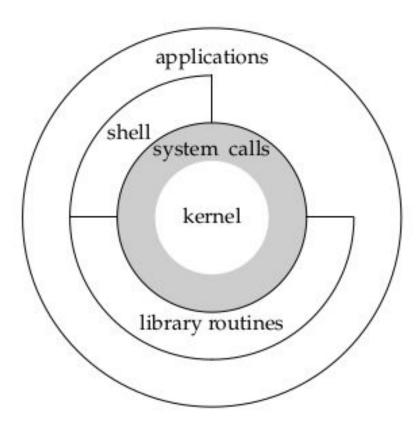


Figure 1.1 Architecture of the UNIX operating system

SHELLS

WHAT IS A SHELL ?

The shell is the command interpreter in an operating system such as Unix or GNU/Linux.
It is a program that executes other programs.
It provides user an interface to the Unix/GNU-Linux system so that the user can run different commands.

TYPES OF LINUX SHELLS

✗ The Bourne Shell (\$)

- Bourne Shell (sh)
- Korn Shell (ksh)
- Bourne Again Shell (bash)
- POSIX Shell (sh)
- ✗ The C Shell (%)
 - C shell (csh)
 - TENEX/TOPS C shell (tsch)

INTERACTING WITH BASH

- 1. Bash Built-ins
 - cd
 - echo
 - alias
 - exit

2. Bash Commands (executables/binaries)
0 Is
0 mkdir
0 cp

chmod

0

And lot more.....

https://courses.cs.washington.edu/courses/cse390a/14au/bash.html

ANATOMY OF A COMMAND

UTILITY [ARGS] ...

Also called options, switches or flags

LET'S MAKE OUR OWN COMMAND

WILDCARDS

WILDCARDS IN BASH

What are wildcards?

 A wildcard is a character that can be used as a substitute for any of a class of characters in a search, thereby greatly increasing the flexibility and efficiency of searches.

Example please ??

– Is *.txt

OKAY, WHAT OTHER WILDCARDS ARE AVAILABLE ?

Standard Wildcards (globbing patterns)

- X ? (question mark)
- **X** {} (curly brackets)
 - o touch file{1..10}
 - o cp { *.txt,*.pdf } ~
- X [] (square brackets)
 - Is file[1-3]
- 🗶 * (asterisk)
 - rm file*

SIR, ये सब तो ठीक.... याद कैसे होगा ????

TAKE THE CHILL PILL !!

Linux got your back :

- 🗶 man
- × help
- **⊁** Info
- \times apropos (similar to man -f)

EVERYTHING IS A FILE(DESCRIPTOR)

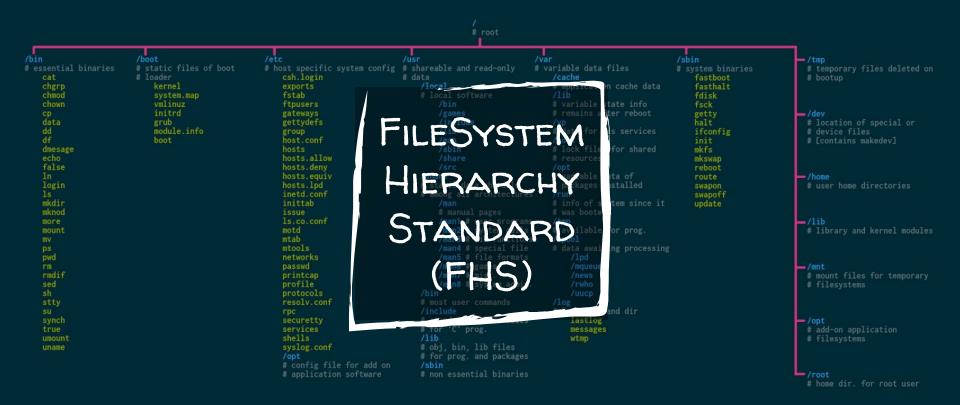
EVERYTHING IS A FILE

everything is a FILE !!!

"Everything is a file" – a wide range of input/output resources such as

- **X** Documents
- **X** Directories
- **X** Hard-drives
- **X** Modems
- Keyboards, printers and even some inter-process and network communications

are simple streams of bytes exposed through the filesystem name space.


DIFFERENT TYPES OF FILES IN LINUX


- 1. Regular
 - Readable
 - Binary
 - **So on....**
- 2. Directories

- 3. Special Files
 - Block
 - Character
 - Symbolic Link files
 - Named Pipe
 - socket

WHY FILE "DESCRIPTOR" ?

- When a file is opened, a file descriptor is created.
- File descriptors are also created for things like pipes and network sockets via different methods.

To read about FHS 3.0 refer :

- https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
- <u>https://www.tecmint.com/linux-directory-structure-and-importan</u> <u>t-files-paths-explained/</u>

MOUNTING

MOUNTING A DEVICE

- X All accessible storage/devices must have an associated location in the directory tree defined by FHS.
- X This is unlike Windows where (in the most common syntax for file paths) there is one directory tree per storage component (drive).

"Mounting is the act of associating a storage device to a particular location in the directory tree. For example, when the system boots, a particular storage device."

Device name

mount /dev/cdrom /media/movies

Mount point (location where the device will be mounted)

IO REDIRECTION, PIPES

REDIRECTING OUTPUT TO A FILE

./a.out > output.txt : redirects output of a.out to output.txt ./a.out >> output.txt : appends output of a.out to output.txt

PIPES

Is /etc/ sort less: lists /etc directory sorts it and passes it to less pager.

USER AND GROUPS

USERS IN LINUX

A user or account of a system is uniquely identified by a numerical number called the UID (unique identification number). There are two types of users:

- X Normal user limited access to files
- **X** Root / Superuser can access all the files.

GROUPS IN LINUX

Linux group is a mechanism to organise a collection of users. Like the user ID, each group is also associated with a unique ID called the GID (group ID).

There are two types of groups:

- X Primary group
- **X** Supplementary group

Each user is a member of exactly one primary group and zero or more supplementary groups.

CHMOD PERMISSION IN OCTAL

Octal Value	Read	Write	Execute
7	r	w	x
6	r	w	
5	r		×
4	r	-	1
3	-	w	x
2	-	w	-
1	(<u>_</u>)	-	x
0	(.	-	-

SUDO

ME: I LOVE YOU GIRL: I HAVE A BOYFRIEND ME: SUDO I LOVE YOU **GIRL : I LOVE YOU TOO**

Boy: I LOVE YOU Girl: I HAVE A BOYFRIEND Boy: SUDO I LOVE YOU Girl: BOY IS NOT IN THE SUDDERS FILE. THIS INCIDENT WILL BE REPORTED.

Hurry before we soll out: Limited supply available. Set yours here into https://goo.gl/04/5g0o Tep a friend & pol yours next

Andreas Lindh we addelindh Sexism, the tech edition.

SUDO

- X Root is the super user and has the ability to do anything on a system. Therefore, in order to have protection against potential damage sudo is used in place of root.
- Sudo allows users and groups access to commands they normally would not be able to use.
- **X** Sudo will allow a user to have **administrative privileges** without logging in as root.

BEFORE USING SUDO, IT MAY NEED TO BE INSTALLED IF IT IS NOT PART OF YOUR DISTRO

SU vs. SU -

SU : will land in the current directorySU - : will land in the root's home directory (/root)

Any questions?

*The content in the slides was designed by Dipunj Gupta