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fix,vw,b) = sign(w x + D)

° denotes +1

° denotes -1

Any of these
would be fine..

..but which is
best?
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‘Classiﬁer Margin 1
X f > yeSt

f(xw,b) = sign(w x + D)
° denotes +1

Define the margin
of a linear

- classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

° denotes -1




Maximum Margin (T
X

> f ~ ysest
1. Maximizing the margin is good
according to intuition and PAC theory
° denotes +1 2. Implies that only support vectors are
> denotes -1 '. ] impc_)rtant; other training examples
. are ignorable.
1 _° "|3. Empirically it works very very well.
| . A - linear classifier
Support Vectors ‘ with the. um
are those ° ° ° o ! .
datapoints that S o © maximum margin.
the margin .0 This is the
pushes up e : :
against simplest kind of

SVM (Called an
Linear SVM




‘ Linear SVM Mathematlcaﬂy
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Linear SVM Mathematically

Goal: 1) Correctly classify all training data
wx, +b =1 ify=+1
WXi_l_bgl ifyi:-l

y. (Wx, +b) =1 for all | ,
2) Maximize the Margin M=—
1 W

C. . t
same as minimize —WW

D

We can formulate a Quadratic Optimization Problem and solve for wand b

1
Minimize @(W)= EWtW

y.(wx. +b)>1 Vi

subject to




Solving the Optimization Problem

Find w and b such that

d(w) =2 wTw is minimized;

and for all {(X; ,Yi)}: v; (W™, + b) > 1
Need to optimize a quadratic function subject to linear
constraints.
Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather
Intricate) algorithms exist for solving them.

The solution involves constructing a dual problem where a

Lagrange multiplier a;is associated with every constraint in the
primary problem:

Find «;...a such that

Q@) =Xa; - YaXLaouyy;X;TX; is maximized and
(1) Zogy;=0

(2) ;>0 for all ¢




The Optimization Problem Solution

The solution has the form:

W =2ayiX; b=vy,- w'x, for any x, such that a,=0

Each non-zero a; indicates that corresponding x; is a
support vector.

Then the classifying function will have the form:

f(x) = Zay X, "X + b
Notice that it relies on an inner product between the test
point x and the support vectors x; — we will return to this
later.

Also keep in mind that solving the optimization problem

involved computing the inner products x;'x; between all

pairs of training points.




Dataset with noise

* denotes +1 Hard Margin: So far we require
all data points be classified correctly

° denotes -1

- No training error
What if the training set is
noisy?

- Solution 1: use very powerful
kernels

OVERFITTING!




Soft Margin Classification

Slack variables §i can be added to allow
misclassification of difficult or noisy examples.

What should our quadratic
optimization criterion be?

Minimize
o 1 R
° “ww+C) g
2 1




Hard Margin v.s. Soft Margin

The old formulation:

Find w and b such that
®(w) =% w'w is minimized and for all {(X; ,y;)}
yi (WX +b)=1

The new formulation incorporating slack variables:

Find w and b such that
d(w) =2 wTw + CX&  is minimized and for all {(X; ,Y;)}
yi(Wix;+b)>1-& and &=O0foralli

Parameter C can be viewed as a way to control
overfitting.



Linear SVMs: Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they
define the hyperplane.

Quadratic optimization algorithms can identify which training
points x; are support vectors with non-zero Lagrangian
multipliers a..

Both in the dual formulation of the problem and in the solution
training points appear only inside dot products:

Find a;...a, such that

Q(0) =Za; - HEZaayyXTx, iimized and
(1) Zajy; =0

(2) 0<a<Cforallg,

(%) = Zayxi[x + p




Non-linear SVMs

Datasets that are linearly separable with some noise
work out great:
9 — | @._. -

But what are we going to do if the dataset is just too hard?

o—O *—0—

0 X
How about... mapping data to a higher-dimensional
space:




Non-linear SVMs: Feature spaces

General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:
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The “Kernel Trick™

The linear classifier relies on dot product between vectors K(x;,X;)=x;"X;
If every data point is mapped into high-dimensional space via some
transformation ®: x — @(x), the dot product becomes:

K(X;, %)= 0(x;) To(X;)
A kernel function is some function that corresponds to an inner product in
some expanded feature space.

Example:
2-dimensional vectors x=[x; X,]; let K(x;x;)=(1 + X;x;)*
Need to show that K(x;,x;)= ¢(X;) To(X;):
K(X;,X;)=(1 + %;7%;)*
= 1+ X127 + 2 X1 X1 XipXip+ Xip™Xio? + 2X1Xj1 + 2XpX;,
=[1 %32 V2 Xy X Xip? V2Xig V2% T[1 %32 N2 X1 Xip Xi?2 N2Xi5 V2X]
= @(x) To(x;)), where @(x) = [1 X, V2 XX, X2 V2%, V2x,]



What Functions are Kernels?

For some functions K(x;x;) checking that

K(Xi:%;)= 9(X;) To(x;) can be cumbersome.
Mercer’s theorem:
Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a
semi-positive definite symmetric Gram matrix:

K(X1.Xq) | K(X1,X5) | K(X4,X35) K(X1,Xn)
K(X2,X1) | K(X2,X5) | K(X5,X3) K(X2,Xp)
K(X.@.,Xl) K(X.|;|;X2) K(X.|;|;X3) K(X.@.,XN)




Examples of Kernel Functions
Linear: K(x;,x;)= X; 'X;
Polynomial of power p: K(x;,x;)= (1+ X; 'x;)P
Gaussian (radial-basis function network):

2
i

)

K(Xi’Xj) — eXp(_

20

Sigmoid: K(x;,x;)= tanh(ByX; 'x; + B,)



Non-linear SVMs Mathematically

Dual problem formulation:

Find a;...a such that
(1) Zayy; =0
(2) a; > 0 for all a;

The solution is:

f(x) = Zay;K(X;, X;)+ b

Optimization techniques for finding a;’s remain the same!



Nonlinear SVM - Overview

SVM locates a separating hyperplane in the
feature space and classify points in that
space

It does not need to represent the space
explicitly, simply by defining a kernel
function

The kernel function plays the role of the dot
product in the feature space.



Properties of SVM

Flexibility in choosing a similarity function
Sparseness of solution when dealing with large data
sets

- only support vectors are used to specify the separating
hyperplane

Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the
feature space

Overfitting can be controlled by soft margin
approach

Nice math property: a simple convex optimization problem
which is guaranteed to converge to a single global solution

Feature Selection



SVM Applications

SVM has been used successfully in many
real-world problems
- text (and hypertext) categorization
- Image classification
- bioinformatics (Protein classification,
Cancer classification)
- hand-written character recognition



Application 1: Cancer Classification

High Dimensional

1000; n<100 Genes
“P- < Patients g-1 | 9g-2 | ... g-p
P-1
Imbalanced p-2
- less positive samples |
p-n
n+
K[x,x]=k(x,X)+ 1 —
N
Many irrelevant features FEATURE SELECTION

_

Noisy In the linear case,
\ w2 gives the ranking of dim i

SVM is sensitive to noisy (mis-labeled) data &




Weakness of SVM

It IS sensitive to noise

- A relatively small number of mislabeled examples can
dramatically decrease the performance

It only considers two classes

- how to do multi-class classification with SVM?
- Answer:

1) with output arity m, learn m SVM’s

o SVM 1 learns “Output==1" vs “Output !=1”

o SVM 2 learns “Output==2" vs “Output != 2”

a .

o SVM m learns “Output==m” vs “Output = m”

2)To predict the output for a new input, just predict with each
SVM and find out which one puts the prediction the furthest
Into the positive region.



Application 2: Text Categorization

Task: The classification of natural text (or
hypertext) documents into a fixed number of
predefined categories based on their content.

- email filtering, web searching, sorting documents by
topic, etc..

A document can be assigned to more than
one category, so this can be viewed as a
series of binary classification problems, one
for each category



Representation of Text

IR’s vector space model (aka bag-of-words representation)

A doc is represented by a vector indexed by a pre-fixed
set or dictionary of terms

Values of an entry can be binary or weights

tflog (1df;)

K

h:(x) =

Normalization, stop words, word stems
Doc x => @(X)



Text Categorization using SVM

The distance between two documents is @(x)-@(z)

K(x,z) = {(@(x)@(z)is avalid kernel, SVM can be
used with K(x,z) for discrimination.

Why SVM?
-High dimensional input space
-Few irrelevant features (dense concept)
-Sparse document vectors (sparse instances)
-Text categorization problems are linearly separable



Some Issues

Choice of kernel
- Gaussian or polynomial kernel is default
- If ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate
similarity measures

Choice of kernel parameters
- e.g. o in Gaussian kernel

- 0 is the distance between closest points with different
classifications

- In the absence of reliable criteria, applications rely on the use
of a validation set or cross-validation to set such parameters.

Optimization criterion — Hard margin v.s. Soft margin

- alengthy series of experiments in which various parameters
are tested



Additional Resources

An excellent tutorial on VC-dimension and Support
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):955-
974, 1998.

The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998

http://www.kernel-machines.org/



http://www.kernel-machines.org/
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