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Overview

◼ Intro. to Support Vector Machines (SVM)

◼ Properties of SVM

◼ Applications
➢ Gene Expression Data Classification

➢ Text Categorization if time permits

◼ Discussion



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

w x + b<0

w x + b>0
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Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Any of these 
would be fine..

..but which is 
best?



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

How would you 
classify this data?

Misclassified

to +1 class



Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

Define the margin
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint.
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Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w x + b)

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin.

This is the 
simplest kind of 
SVM (Called an 
LSVM)

Linear SVM

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against

1. Maximizing the margin is good 
according to intuition and PAC theory 

2. Implies that only support vectors are 
important; other training examples 
are ignorable.

3. Empirically it works very very well.



Linear SVM Mathematically

What we know:

◼ w . x+ + b = +1 

◼ w . x- + b = -1 

◼ w . (x+-x-) = 2 
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Linear SVM Mathematically

◼ Goal: 1) Correctly classify all training data

if yi = +1

if yi = -1

for all i

2) Maximize the Margin

same as minimize

◼ We can formulate a Quadratic Optimization Problem and solve for w and b

◼ Minimize 

subject to                          
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Solving the Optimization Problem

◼ Need to optimize a quadratic function subject to linear 

constraints.

◼ Quadratic optimization problems are a well-known class of 

mathematical programming problems, and many (rather 

intricate) algorithms exist for solving them.

◼ The solution involves constructing a dual problem where a 

Lagrange multiplier αi is associated with every constraint in the 

primary problem:

Find w and b such that

Φ(w) =½ wTw is minimized; 

and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0

(2) αi ≥ 0 for all αi



The Optimization Problem Solution

◼ The solution has the form:

◼ Each non-zero αi indicates that corresponding xi is a 

support vector.

◼ Then the classifying function will have the form:

◼ Notice that it relies on an inner product between the test 

point x and the support vectors xi – we will return to this 

later.

◼ Also keep in mind that solving the optimization problem 

involved computing the inner products xi
Txj between all 

pairs of training points.

w =Σαiyixi             b= yk- wTxk for any xk such that αk 0

f(x) = Σαiyixi
Tx + b



Dataset with noise  

◼ Hard Margin: So far we require 

all data points be classified correctly 

- No training error

◼ What if the training set is 

noisy?

- Solution 1: use very powerful 

kernels

denotes +1

denotes -1

OVERFITTING!



Slack variables ξi can be added to allow 

misclassification of difficult or noisy examples.

e7

e11

e2

Soft Margin Classification

What should our quadratic 

optimization criterion be?
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Hard Margin v.s. Soft Margin

◼ The old formulation:

◼ The new formulation incorporating slack variables:

◼ Parameter C can be viewed as a way to control 

overfitting.

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i



Linear SVMs:  Overview
◼ The classifier is a separating hyperplane.

◼ Most “important” training points are support vectors; they 

define the hyperplane.

◼ Quadratic optimization algorithms can identify which training 

points xi are support vectors with non-zero Lagrangian 

multipliers αi. 

◼ Both in the dual formulation of the problem and in the solution 

training points appear only inside dot products:

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and 

(1)  Σαiyi = 0

(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b



Non-linear SVMs

◼ Datasets that are linearly separable with some noise 

work out great:

◼ But what are we going to do if the dataset is just too hard? 

◼ How about… mapping data to a higher-dimensional 

space:

0 x

0 x

0 x

x2



Non-linear SVMs:  Feature spaces

◼ General idea:   the original input space can always be 

mapped to some higher-dimensional feature space 

where the training set is separable:

Φ:  x → φ(x)



The “Kernel Trick”
◼ The linear classifier relies on dot product between vectors K(xi,xj)=xi

Txj

◼ If every data point is mapped into high-dimensional space via some 

transformation Φ:  x → φ(x), the dot product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

◼ A kernel function is some function that corresponds to an inner product in 

some expanded feature space.

◼ Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2  xj2
2  √2xj1  √2xj2] 

= φ(xi)
Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]



What Functions are Kernels?

◼ For some functions K(xi,xj) checking that 

K(xi,xj)= φ(xi)
Tφ(xj) can be cumbersome.

◼ Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

◼ Semi-positive definite symmetric functions correspond to a 

semi-positive definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xN)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xN)

… … … … …

K(xN,x1) K(xN,x2) K(xN,x3) … K(xN,xN)

K=



Examples of  Kernel Functions

◼ Linear: K(xi,xj)= xi 
Txj

◼ Polynomial of power p: K(xi,xj)= (1+ xi 
Txj)

p

◼ Gaussian (radial-basis function network):

◼ Sigmoid: K(xi,xj)= tanh(β0xi 
Txj + β1)
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Non-linear SVMs Mathematically

◼ Dual problem formulation:

◼ The solution is:

◼ Optimization techniques for finding αi’s remain the same!

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 

(1)  Σαiyi = 0

(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b



◼ SVM locates a separating hyperplane in the 

feature space and classify points in that 

space 

◼ It does not need to represent the space 

explicitly, simply by defining a kernel 

function

◼ The kernel function plays the role of the dot 

product in the feature space.

Nonlinear SVM - Overview



Properties of  SVM

◼ Flexibility in choosing a similarity function

◼ Sparseness of solution when dealing with large data 
sets

- only support vectors are used to specify the separating 
hyperplane 

◼ Ability to handle large feature spaces

- complexity does not depend on the dimensionality of the 
feature space

◼ Overfitting can be controlled by soft margin 
approach

◼ Nice math property: a simple convex optimization problem 
which is guaranteed to converge to a single global solution

◼ Feature Selection



SVM Applications

◼ SVM has been used successfully in many 

real-world problems

- text (and hypertext) categorization

- image classification

- bioinformatics (Protein classification,   

Cancer classification)

- hand-written character recognition



Application 1: Cancer Classification

◼ High Dimensional
- p>1000; n<100

◼ Imbalanced

- less positive samples

◼ Many irrelevant features

◼ Noisy 

Genes

Patients g-1 g-2 …… g-p

P-1

p-2

…….

p-n

N

n
xxkxxK

+

+= ),(],[

FEATURE SELECTION

In the linear case,

wi
2 gives the ranking of dim i

SVM is sensitive to noisy (mis-labeled) data 



Weakness of  SVM
◼ It is sensitive to noise

- A relatively small number of mislabeled examples can 
dramatically decrease the performance

◼ It only considers two classes

- how to do multi-class classification with SVM?

- Answer: 

1) with output arity m, learn m SVM’s

❑ SVM 1 learns “Output==1” vs “Output != 1”

❑ SVM 2 learns “Output==2” vs “Output != 2”

❑ :

❑ SVM m learns “Output==m” vs “Output != m”

2)To predict the output for a new input, just predict with each 
SVM and find out which one puts the prediction the furthest 
into the positive region.



Application 2: Text Categorization

◼ Task: The classification of natural text (or 

hypertext) documents into a fixed number of 

predefined categories based on their content.

- email filtering, web searching, sorting documents by 

topic, etc..

◼ A document can be assigned to more than 

one category, so this can be viewed as a 

series of binary classification problems, one 

for each category



Representation of  Text

IR’s vector space model (aka bag-of-words representation)

◼ A doc is represented by a vector indexed by a pre-fixed 

set or dictionary of terms

◼ Values of an entry can be binary or weights

◼ Normalization, stop words, word stems 

◼ Doc x => φ(x)



Text Categorization using SVM

◼ The distance between two documents is φ(x)·φ(z)

◼ K(x,z) = 〈φ(x)·φ(z) is a valid kernel, SVM can be 

used with K(x,z) for discrimination. 

◼ Why SVM?

-High dimensional input space

-Few irrelevant features (dense concept)

-Sparse document vectors (sparse instances)

-Text categorization problems are linearly separable



Some Issues

◼ Choice of kernel
- Gaussian or polynomial kernel is default

- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate 
similarity measures

◼ Choice of kernel parameters
- e.g. σ in Gaussian kernel

- σ is the distance between closest points with different 
classifications 

- In the absence of reliable criteria, applications rely on the use 
of a validation set or cross-validation to set such parameters. 

◼ Optimization criterion – Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters 
are tested 



Additional Resources

◼ An excellent tutorial on VC-dimension and Support 
Vector Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern 
recognition. Data Mining and Knowledge Discovery, 2(2):955-
974, 1998. 

◼ The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-
Interscience; 1998

http://www.kernel-machines.org/

http://www.kernel-machines.org/
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