Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Minimum Spanning Tree

A minimum spanning tree or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible.

Applications : Computer Networks

Example

Algorithms for Obtaining the Minimum Spanning Tree

Kruskal's Algorithm

Prim's Algorithm

Kruskal's Algorithm

Step 1: Sort the edges according to their weight.

Step 2 : Select the first |V|-1 edges such that they do not make circuit/loop with previously selected edges (If the edges make a loop or not is checked using union and find functions of dsu).

Walk-Through

Sort	the	edges	by	increasing	edge	weight

edge	d_{v}	edge	d_{v}	
(D,E)	1	(B,E)	4	
(D,G)	2	(B,F)	4	
(E,G)	3	(B,H)	4	
(C,D)	3	(A,H)	5	
(G,H)	3	(D,F)	6	
(C,F)	3	(A,B)	8	
(B,C)	4	(A,F)	10	

edge	d_{v}	
(D,E)	1	V
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	_
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_{v}	
D,E)	1	V
D,G)	2	V
E,G)	3	
C,D)	3	
G,H)	3	
C,F)	3	
B,C)	4	

edge	d_v
(B,E)	4
(B,F)	4
(B,H)	4
(A,H)	5
(D,F)	6
(A,B)	8
(A,F)	10

Select first IVI-1 edges which do not generate a cycle

edge	d_{v}		edge	d_{v}	Ī
(D,E)	1	V	(B,E)	4	Ī
(D,G)	2	1	(B,F)	4	İ
(E,G)	3	x	(B,H)	4	İ
(C,D)	3		(A,H)	5	İ
(G,H)	3		(D,F)	6	İ
(C,F)	3		(A,B)	8	ĺ
(B,C)	4		(A,F)	10	ĺ

Accepting edge (E,G) would create a cycle

edge	d_{v}	
D,E)	1	1
D,G)	2	V
E,G)	3	x
C,D)	3	V
G,H)	3	_
(C,F)	3	
B,C)	4	

edge	d_v
(B,E)	4
(B,F)	4
(B,H)	4
(A,H)	5
(D,F)	6
(A,B)	8
(A,F)	10

edge	d_{v}	
(D,E)	1	1
(D,G)	2	1
(E,G)	3	x
(C,D)	3	1
(G,H)	3	1
(C,F)	3	_
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_{v}	
(D,E)	1	1
(D,G)	2	V
(E,G)	3	x
(C,D)	3	1
(G,H)	3	1
(C,F)	3	V
(B,C)	4	

edge	d_{v}	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

edge	d_v	
(D,E)	1	1
(D,G)	2	V
(E,G)	3	x
(C,D)	3	V
(G,H)	3	1
(C,F)	3	V
(B,C)	4	V

	d_{v}	edge
X	4	(B,E)
x	4	(B,F)
X	4	(B,H)
V	5	(A,H)
X	6	(D,F)
x	8	(A,B)
x	10	(A,F)

65

x x

х

x x

Kruskal's Algorithm

edge	d_{v}		edge	d
(D,E)	1	1	(B,E)	4
(D,G)	2	V	(B,F)	4
(E,G)	3	x	(B,H)	4
(C,D)	3	V	(A,H)	5
(G,H)	3	1	(D,F)	6
(C,F)	3	1	(A,B)	8
(B,C)	4	1	(A,F)	10

Done!

Total Cost = $\sum d_v = 21$

Code:

#include <iostream> #include <vector> #include <utility> #include <algorithm> using namespace std; const int MAX = le4 + 5; int id[MAX], nodes, edges; pair <long long, pair<int, int> > p[MAX]; void initialize() for(int i = 0; i < MAX; ++i) id[i] = i; int root(int x) while(id[x] != x) id[x] = id[id[x]];x = id[x];} return x; void unionl(int x, int y) { int p = root(x); int q = root(y); id[p] = id[q];

```
long long kruskal(pair<long long, pair<int, int> > p[])
    int x, y;
    long long cost, minimumCost = 0;
    for(int i = 0; i < edges; ++i)
        // Selecting edges one by one in increasing order from the beginning
        x = p[i].second.first;
        y = p[i].second.second;
        cost = p[i].first;
        // Check if the selected edge is creating a cycle or not
        if(root(x) != root(y))
             minimumCost += cost;
             union1(x, y);
        }
    1
    return minimumCost:
int main()
1
    int x, y;
   long long weight, cost, minimumCost;
    initialize();
    cin >> nodes >> edges;
    for(int i = 0;i < edges;++i)</pre>
    {
        cin >> x >> y >> weight;
        p[i] = make_pair(weight, make_pair(x, y));
    1
    // Sort the edges in the ascending order
    sort(p, p + edges);
    minimumCost = kruskal(p);
    cout << minimumCost << endl;</pre>
    return 0:
```

Time Complexity:

Complexity:

• Time complexity: O(mlog(n)) where m is the number of edges and n is the number of nodes.

Ques:

There are N homes in a village, we have to facilitate water supply in each of them. We can either build a well in a home or connect it with pipe to some different home already having water supply. More formally, we can either build a new well in the home or connect it with a pipeline to some different home which either has it's own well or further gets water supply from a different home and so on. There is some cost associated with both building a new well and laying down a new pipeline. We have to supply water in all homes and minimise the total cost.

- Dynamic programming approach.
- All pair shortest path algorithm.
- Works for graph with negative weight.

Application

• Transitive closure of graph.

Pseudo Code

- $n \leftarrow rows$ [W].
- $\bullet \quad D^0 \leftarrow W$
- for $k \leftarrow 1$ to n
 - $\circ \quad \text{do for } i \leftarrow 1 \text{ to } n$
 - do for $j \leftarrow 1$ to n
 - do $d_{ij}^{(k)} \leftarrow \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
- return D⁽ⁿ⁾

$D_{ij}^{(2)} =$	0	3	8	4	-4	$\pi^{(2)}=$	NIL	1	1	2	1
	00	0	00	1	7		NIL	NIL	NIL	2	2
	00	4	0	-5	11		NIL	3	NIL	3	2
	2	5	10	0	-2		4	1	1	NIL	1
	00	00	00	6	0		NIL	NIL	NIL	5	NIL

$D_{ij}^{(4)} =$	0	3	8	3	-4	$\pi^{(4)}$ =	NIL	1	1	3	1
	3	0	11	1	-1		4	NIL	4	2	2
-	3	0	0	-5	-7		4	4	NIL	3	4
	2	5	10	0	-2		4	1	1	NIL	1
	8	11	16	6	0		4	4	4	5	NIL

$D_{ij}^{(5)} = ($	0 3	3	8	3	-4	$\pi^{(5)}$ =	NIL	1	1	5	1
3) ()	11	1	-1		4	NIL	4	2	4
-3	3 (D	0	-5	-7		4	4	NIL	3	4
2	2	5	10	0	-2		4	1	1	NIL	1
8	1	1	16	6	0		4	4	4	5	NIL

Complexity

- Time complexity O(N^3).
- Space complexity O(N^2)

Negative Cycle Detection

If there exists an *i* from $\{1,...,n\}$ such that $d_{ii}^n < 0$. then, graph has negative cycle.

