Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Minimum Spanning Tree

A minimum spanning tree or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible.

Applications : Computer Networks

Example

Algorithms for Obtaining the Minimum Spanning Tree

« Kruskal's Algorithm

• Prim's Algorithm

Kruskal's Algorithm

Step 1: Sort the edges according to their weight.

Step 2 : Select the first |V|-1 edges such that they do not make circuit/loop with previously selected edges (If the edges make a loop or not is checked using union and find functions of dsu).

53

Walk-Through

Sort the edges by increasing edge weight

 $d_{\scriptscriptstyle v}$ $\overline{4}$ $\overline{4}$

 $\overline{4}$

 $\overline{5}$ 6

 $\,$ 8 $\,$

 $10\,$

Select first IVI-1 edges which do not generate a cycle

Accepting edge (E,G) would create a cycle

 d_{v}

4

 $\overline{4}$

 $\overline{4}$

5

6

8

10

Walk-Through

 $d_{\scriptscriptstyle v}$

4

4

 $\overline{4}$

5 6

8

 $10\,$

 $\boldsymbol{\chi}$

 $\pmb{\chi}$

 $\pmb{\chi}$

 $\pmb{\chi}$

 $\pmb{\chi}$

 $\pmb{\chi}$

Walk-Through

65

Kruskal's Algorithm

Done!

Total Cost = $\sum d_v = 2I$

Code:

#include <iostream> #include <vector> #include <utility> #include <algorithm> using namespace std; const int $MAX = 1e4 + 5$; int id[MAX], nodes, edges; pair <long long, pair<int, int> > p[MAX]; void initialize() \mathbf{f} $for(int i = 0; i < MAX;++i)$ $id[i] = i;$ $int root(int x)$ \overline{E} while(id[x] $!= x$) \mathcal{L} $id[x] = id(id[x]]$; $x = id[x];$ \mathcal{F} return x; void unionl(int x, int y) \mathbf{F} $int p = root(x);$ $int q = root(y);$ $id[p] = id[q];$ \mathbf{u}

```
long long kruskal(pair<long long, pair<int, int> > p[])
    int x, y;long long cost, minimumCost = \theta;
    for(int i = \theta; i < edges;++i)
        // Selecting edges one by one in increasing order from the beginning
        x = p[i]. second. first;
        y = p[i]. second. second;
         cost = p[i].first;// Check if the selected edge is creating a cycle or not
         if(root(x) != root(y))minimumCost += cost:union1(x, y);\ddagger\mathbf{L}return minimumCost:
int <math>main()</math>£.
    int x, y;
    long long weight, cost, minimumCost;
    initialize();
    cin >> nodes >> edges;
    for(int i = 0; i < edges;++i)\epsilon\sin \gg x \gg y \gg weight;
        p[i] = make_pair(weight, make_pair(x, y));
    \mathbf{F}// Sort the edges in the ascending order
    sort(p, p + edges);minimumCost = kruskal(p);cout << minimumCost << endl;
    return 0;
```
Time Complexity:

Complexity:

• Time complexity: $O(m \log(n))$ where m is the number of edges and n is the number of nodes.

Ques:

There are N homes in a village, we have to facilitate water supply in each of them. We can either build a well in a home or connect it with pipe to some different home already having water supply. More formally, we can either build a new well in the home or connect it with a pipeline to some different home which either has it's own well or further gets water supply from a different home and so on. There is some cost associated with both building a new well and laying down a new pipeline. We have to supply water in all homes and minimise the total cost.

- Dynamic programming approach.
- All pair shortest path algorithm.
- Works for graph with negative weight.

Application

● Transitive closure of graph.

Pseudo Code

- \bullet n \leftarrow rows [W].
- \bullet $D^0 \leftarrow W$
- \bullet for k \leftarrow 1 to n
	- \circ do for $i \leftarrow 1$ to n
		- \blacksquare do for $j \leftarrow 1$ to n
			- do d_{ij}^(k) ← min (d_{ij}^(k-1),d_{ik}^(k-1)+d_{kj}^(k-1))
- return $D^{(n)}$

Complexity

- *●* **Time complexity O(N^3).**
- *●* **Space complexity O(N^2)**

Negative Cycle Detection

 If there exists an *i* from {1,..., n} such that $d_{ii}^n < 0$. then, graph has negative cycle.

