
Topological Sorting

(Also called Toposort)

Directed Acyclic
Graphs(DAGs)

A directed graph that has
no cycles

A directed acyclic graph (DAG) is a
conceptual representation of a series of
activities

Connecting Lines represent the flow of the
graph

Topological Sorting

 Example Graph

Linear ordering of vertices such that for
every directed edge u v, vertex u comes
before v in the ordering. Only possible in
DAGs.

Example Topological sorts:

5 4 2 3 1 0

4 5 2 3 1 0

5 4 2 0 3 1

4 5 0 2 3 1

Given this graph representing
inter-dependencies on different
courses, In what order should a
student must complete the
following set of courses?

Main purpose of Toposort can be seen through the following problem statement:

Answer : Toposort

Order of completion :

MATH200, MATH201, CS150, CS151,
CS221, CS222, CS325, CS435,
CS351, CS370, CS375, CS401

Or any other possible Toposort of
the given DAG.

Code and Implementation

Two Approaches :
● Indegree Based
● DFS Based

In-degree Approach / Kahn’s Algorithm

1. Compute the indegrees of all vertices
2. Pick all the vertices with in-degree as 0 and add them into a

queue (Enqueue operation)
3. Remove a vertex from the queue (Dequeue operation) and

then. Increment count of visited nodes by 1. Decrease
in-degree by 1 for all its neighboring nodes. If in-degree of a
neighboring nodes is reduced to zero, then add it to the queue.

4. Repeat Step 3 until the queue is empty
If count of visited nodes is not equal to the number of
nodes in the graph then the topological sort is not
possible for the given graph.

Indegrees
0: 1, 2
1: 5
2: 3, 6, 7
3: 4

Queue q -> 1 , 2

Node 1 dequeued and
edges removed.

Indegrees
0: 2
1: 5,3
2: 6, 7, 4

Queue q -> 2

No new nodes with
indegree 0 found

Node 2 dequeued and edges
removed.

Indegrees
0: 5
1: 3,4
2: 6, 7

Queue q -> 5

Node 4 dequeued and edges removed

Indegrees
0: 3,7
1: 6

Queue q -> 3 , 7

Node 5 dequeued and edges removed.

Indegrees
0: 4
1: 3,7
2: 6

Queue q -> 4

Node 3 dequeued and edges
removed.

Indegrees
0: 6,7

Queue q -> 7,6

Final few steps :

Node 7 dequeued.
Node 6 dequeued.

If all dequeue
operations are printed
the printed order
becomes :

1,2,5,4,3,7,6

Try yourself :
Indegree approach in
a non-DAG

 1,2,5,4,3,7,6

Code
initialization

Printing the answer or checking
for cycle

Main code

Complexity Analysis of Indegree approach

Computation of Indegree : O(V+E)

Updating Indegree during dequeue per edge: O(1)
Total complexity of updating indegree during dequeue : O(V+E)

Total queue related operations : O(V+E)

Net complexity of Indegree based Approach : O(V+E)

DFS Based Approach

Recall the concept of start time and finishing time in DFS from last
class.

What do you get if you order the vertices in order of increasing start
times? Answer is DFS Traversal order, pretty obvious this part!

Well , now we’ll see that ordering the vertices in order of decreasing
finish times gives you topological sort. How? See next slide ;)

Decreasing order of finish times

No event dependent
on a vertex can
execute before the
vertex’s own
execution.

Ordering vertices in decreasing finish times

● Option 1 : Run a DFS , note down finish times,
sort to get output (Write extra code to make and
sort pairs, a pretty simple task)

● Option 2 : Modify existing recursive DFS code
(Even simpler, add 1 line of code to DFS,better
complexity)

Driver code for topo() in
main

Code for Modified DFS

Initialization

Complexity Analysis of DFS approach

You
know, the
usual

