
Topological Sorting

(Also called Toposort)



Directed Acyclic 
Graphs(DAGs)

A directed graph that has 
no cycles



A directed acyclic graph (DAG) is a 
conceptual representation of a series of 
activities

Connecting Lines represent the flow of the 
graph



Topological Sorting

  
         Example Graph

Linear ordering of vertices such that for 
every directed edge u v, vertex u comes 
before v in the ordering. Only possible in 
DAGs.

Example Topological sorts:

5 4 2 3 1 0

4 5 2 3 1 0

5 4 2 0 3 1

4 5 0 2 3 1



Given this graph representing 
inter-dependencies on different 
courses, In what order should a 
student must complete the 
following set of courses?

Main purpose of Toposort can be seen through the following problem statement:



Answer : Toposort

Order of completion : 

MATH200, MATH201, CS150, CS151, 
CS221, CS222, CS325, CS435, 
CS351, CS370, CS375, CS401

Or any other possible Toposort of 
the given DAG.



Code and Implementation

Two Approaches : 
● Indegree Based
● DFS Based



In-degree Approach / Kahn’s Algorithm

1. Compute the indegrees of all vertices
2. Pick all the vertices with in-degree as 0 and add them into a 

queue (Enqueue operation)
3. Remove a vertex from the queue (Dequeue operation) and 

then. Increment count of visited nodes by 1. Decrease 
in-degree by 1 for all its neighboring nodes. If in-degree of a 
neighboring nodes is reduced to zero, then add it to the queue.

4. Repeat Step 3 until the queue is empty
If count of visited nodes is not equal to the number of 
nodes in the graph then the topological sort is not 
possible for the given graph.



Indegrees
0: 1, 2
1: 5
2: 3, 6, 7
3: 4

Queue q -> 1 , 2



Node 1 dequeued and 
edges removed.

Indegrees
0: 2
1: 5,3
2: 6, 7, 4

Queue q -> 2

No new nodes with 
indegree 0 found



Node 2 dequeued and edges 
removed.

Indegrees
0: 5
1: 3,4
2: 6, 7

Queue q -> 5



Node 4 dequeued and edges removed

Indegrees
0: 3,7
1: 6

Queue q ->  3 , 7

Node 5 dequeued and edges removed.

Indegrees
0: 4
1: 3,7
2: 6

Queue q -> 4



Node 3 dequeued and edges 
removed.

Indegrees
0: 6,7

Queue q -> 7,6

Final few steps : 

Node 7 dequeued.
Node 6 dequeued.

If all dequeue 
operations are printed 
the printed order 
becomes : 

1,2,5,4,3,7,6



Try yourself : 
Indegree approach in 
a non-DAG

        1,2,5,4,3,7,6



Code
initialization



Printing the answer or checking 
for cycle

Main code



Complexity Analysis of Indegree approach

Computation of Indegree : O(V+E) 

Updating Indegree during dequeue per edge: O(1)
Total complexity of updating indegree during dequeue : O(V+E)

Total queue related operations : O(V+E)

Net complexity of Indegree based Approach : O(V+E) 



DFS Based Approach

Recall the concept of start time and finishing time in DFS from last 
class.

What do you get if you order the vertices in order of increasing start 
times? Answer is DFS Traversal order, pretty obvious this part!

Well , now we’ll see that ordering the vertices in order of decreasing 
finish times gives you topological sort. How? See next slide ;)



Decreasing order of finish times

No event dependent 
on a vertex can 
execute before the 
vertex’s own 
execution.



Ordering vertices in decreasing finish times

● Option 1 : Run a DFS , note down finish times, 
sort to get output (Write extra code to make and 
sort pairs, a pretty simple task)

● Option 2 : Modify existing recursive DFS code 
(Even simpler, add 1 line of code to DFS,better 
complexity)



Driver code for topo() in 
main

Code for Modified DFS

Initialization



Complexity Analysis of DFS approach

You 
know, the 
usual


