
COIN CHANGE
PROBLEM
(An application of dynamic programming)

DP is doing brute force smartly.

Problem statement:

■ You are given coins of different denominations and
a total amount of money amount. Compute the
fewest number of coins that you need to make up
that amount. If that amount of money cannot be
made up by any combination of the coins, return -
1.

■ NOTE: you have infinite no of coins of each
denominations mentioned in the problem.

I have 1, 2, 5,

10 rupees

coins

Let's pay

using

minimum no

of coins

Give me

20 Rs for

the juice

ThanksHere is ur

20 rs

Different ways to solve this problem

■ Brute force method

■ Greedy approach

■ Divide and conquer (coupled with dynamic programming)

Brute force method

■ Given four denominations Rs 1, Rs 2, Rs 5, Rs 10
assume we take a, b, c, d number of coins of 1, 2, 5, 10 denominations

then n = a*1 + 2*b + 5*c + 10*d
such that (a + b + c + d) is minimum.

■ - at most there can be n coins each of Rs 1.
- Try all combinations where a <= n, b <= n, c <= n and d <= n.
- Choose all valid combinations that give n = a + 2*b + 5*c + 10*d
- take the minimum valid (a+b+c+d) combination as the answer.

■ Time complexity: ??

■ Space complexity: ??

Greedy method

■ If(n >= 10) take one 10 rupee coin and solve for (n – 10)

else if(n >= 5) take one 5 rupee coin and solve for (n – 5)

else if(n >= 2) tale one 2 rupee coin and solve for (n – 2)

else we take n coins as 1 rupee coins

■ For some combination of denominations this approach might always give optimal

result. Consider a combination of 1, 5, 10 and 25 rupee coins. (Prove this)

■ For some combination of denominations this approach may or may not give optimal

answer. Consider n = 15, and denominations are (1, 7, 10).

Divide and conquer (Dynamic
Programming)

Int solve(int n) {

If(n == 0) {
return 0;

}
ans1 = ans2 = ans3 = ans4 = INT_MAX;

if (n >= 10)
ans1 = 1 + solve(n – 10);

if (n >= 5)
ans2 = 1 + solve(n – 5);

if (n >= 2)
ans3 = 1 + solve(n – 2);

ans4 = 1 + solve(n - 1);

return min (ans1, ans2, ans3, ans4);
}

n

n -10

n –10 - 1n – 10 -

2
n –10 -

5

n –10 -

10

n - 1n -2n - 5

Divide and conquer (Dynamic
Programming)

Int solve(int n) {

If(n == 0) {
return 0;

}

if (dp[n] != -1) return dp[n];

ans1 = ans2 = ans3 = ans4 = INT_MAX;

if (n >= 10)
ans1 = 1 + solve(n – 10);

if (n >= 5)
ans2 = 1 + solve(n – 5);

if (n >= 2)
ans3 = 1 + solve(n – 2);

ans4 = 1 + solve(n - 1);

return dp[n] = min (ans1, ans2, ans3, ans4);
}

n

n -10

n –10 - 1n – 10 -

2
n –10 -

5

n –10 -

10

n - 1n -2n - 5

n – 5 -

5

THANK YOU
someone@example.com

