LIS DP

Problem Statement

The Longest Increasing Subsequence (LIS) problem is
to find the length of the longest subsequence of a
given sequence such that all elements of the
subsequence are sorted in increasing order

Input: arr[] = {3, 10, 2, 1, 20}
Output: Length of LIS =3
The longest increasing subsequence is 3, 10, 20

* Given Array {10, 22, 9, 33, 21, 50, 41, 60, 80}

* Then LIS length is 6

e Since LIS Sequence {10, 22, 33, 50, 60, 80}

* Approach : For calculating LIS till ith index we
will check all the number from 1 to (i-1)th
where is smaller than arr[i] and then add 1 to
LIS till that index.

* What is meaning of dp[i] in our approach??.

* Time Complexity ?7?

anl] 110 (22 9 (3 a0 (50 (4 |60 |80

S 1|2 3 . > |b

Code of LIS

void solve()

-
T N maxi=0:
cin====n:
1l arr[n+1],dp[n+1];
(InNnt 1=0;i<n;i++)
{

cin>>arr[i];
dpl[il=1;

(int i=0;i<n;i++)
(int J1=0;j<1;:;j+T)
(arr[il=arrljl)

] dp[i]l=max(dp[i],dp[jl+1);

(Int 1i=0;1i<n;i++)
maxi=max(maxi,dpl[i]) ;
cout<<maxi<<"\n";

Better Approach

e Approach discuss is 0(n"*2). We can optimize it
to O(nlog(n))

* Go through these link
- CPAIlgo LIS
- Video tutorial Tushar Roy LIS

https://cp-algorithms.com/sequences/longest_increasing_subsequence.html
https://www.youtube.com/watch?v=S9oUiVYEq7E

