More Dynamic Programming

Matrix Chain Multiplication

 \circ

⚫ Given some matrices to multiply, determine the **best** order to multiply them so you minimize the total number of single element multiplications.

◦ i.e. Determine the way the matrices are parenthesized.

- First off, it should be noted that matrix multiplication is associative, but not commutative. But since it is associative, we always have:
- \bullet ((AB)(CD)) = (A(B(CD))), or any other grouping as long as the matrices are in the same consecutive order.
- BUT NOT: $((AB)(CD)) = ((BA)(DC))$

- ⚫ It may appear that the amount of work done won't change if you change the parenthesization of the expression, but we can prove that is not the case!
- Let us use the following example:
	- Let A be a 2x10 matrix
	- Let B be a 10x50 matrix
	- Let C be a 50x20 matrix
- Try (AB)C vs A(BC)
- But FIRST, let's review some matrix multiplication rules…

Multiplyting two Matrices $(C = AB)$

- Dimension of matrix $A = n * m$
- Dimension of matrix $B = m * l$
- Dimension of matrix $C = n * I$ (how ?)
- Cost of multiplying these two matrices = $n * m * 1$, how ?

 $A = [a_{00} a_{01} a_{02} \qquad B = [b_{00} b_{01} b_{02} b_{03}$ a_{10} a_{11} a_{12}] b₁₀ b₁₁ b₁₂ b₁₃ a_{20} a_{21} a_{22} b_{20} b_{21} b_{22} b_{23}] Lets see how many calculations do we make for C

- Let's get back to our example: We will show that the way we group matrices when multiplying A, B, C **matters**:
	- Let A be a 2x10 matrix
	- Let B be a 10x50 matrix
	- Let C be a 50x20 matrix
- ⚫ Consider computing **A(BC):**
	- # multiplications for $(BC) = 10x50x20 = 10000$,
	- D = BC, dimension of D = 10 * 20
	- # multiplications for $A(D) = 2 \times 10 \times 20 = 400$
	- Total multiplications = 10000 + 400 = 10400.

⚫ Consider computing **(AB)C**:

- # multiplications for $(AB) = 2 \times 10 \times 50 = 1000$,
- E = (AB), dimension of E = 2 x 50
- # multiplications for $(E)C = 2 \times 50 \times 20 = 2000$,
- Total multiplications = 1000 + 2000 = 3000

- ⚫ Thus, our **goal** today is:
- Given a chain of matrices to multiply, determine the fewest number of multiplications necessary to compute the product, also calculate the final answer matrix

● The key to solving this problem is noticing the **sub-problem optimality condition**:

◦ If a particular parenthesization of the whole product is optimal, then any sub-parenthesization in that product is optimal as well.

⚫ **Say What?**

- *◦* **If** (A (B ((CD) (EF)))) is optimal
- Then (B ((CD) (EF))) is optimal as well
- *◦* **Proof on the next slide…**

- Assume that we are calculating ABCDEF and that the following parenthesization is optimal:
	- $(A \ (B \ ((CD) \ (EF)))$)
	- Then it is necessarily the case that
		- \bullet (B ((CD) (EF)))
	- is the optimal parenthesization of BCDEF.

● Why is this?

- Because if it wasn't, and say (((BC) (DE)) F) was better, then it would also follow that
	- \bullet (A (((BC) (DE)) F)) was better than
	- $(A \ (B \ ((CD) \ (EF)))$),
- contradicting its optimality!

- ⚫ Our final multiplication will ALWAYS be of the form
	- ∘ (A₀⋅ A₁⋅ ... A_k) ⋅ (A_{k+1}⋅ A_{k+2}⋅ ... A_{n-1})
- In essence, there is exactly one value of k for which we should "split" our work into two separate cases so that we get an optimal result.
	- Here is a list of the cases to choose from:

$$
A_0 \cdot (A_1 \cdot A_{k+2} \cdot ... A_{n-1})
$$

$$
A_0 \cdot A_1) \cdot (A_2 \cdot A_{k+2} \cdot ... A_{n-1})
$$

∘ $(A_0 \cdot A_1 \cdot A_2) \cdot (A_3 \cdot A_{k+2} \cdot ... A_{n-1})$ $^{\circ}$...

$$
(\mathsf{A}_{0} \cdot \mathsf{A}_{1} \cdot \ldots \mathsf{A}_{n-3}) \cdot (\mathsf{A}_{n-2} \cdot \mathsf{A}_{n-1})
$$

- ∘ $(A_0 \cdot A_1 \cdot ... A_{n-2}) \cdot (A_{n-1})$
- ⚫ Basically, count the number of multiplications in each of these choices and **pick the minimum**.
	- One other point to notice is that you have to account for the minimum number of multiplications in each of the two products.

⚫ Consider the case multiplying these 4 matrices:

- A: 2x4
- $B: 4x2$
- C: 2x3
- \circ D: 3x1
- 1. $(A)(BCD)$ This is a 2x4 multiplied by a 4x1,

 \circ so $2x4x1 = 8$ multiplications, plus whatever work it will take to multiply (BCD).

2. $(AB)(CD)$ - This is a 2x2 multiplied by a 2x1, ◦ so $2x2xI = 4$ multiplications, plus whatever work it will take to multiply (AB) and (CD).

⚫ **Our recursive formula:**

 \circ cost(i, j) = cost(i, k) + cost(k + 1, j) + p_{i-1} p_k p_j

● Let's solve it using recursion

```
CCY11, HOTT CYC, TC33X11/,
                                                             D LIEE LOS,
    int dp[105][105];
2425
26
    int MCM(vector<int>&arr,int x,int y)
27\{28
             if(x= y)29
                       return 0;
             if(dp[x][y] != -1)30
31
                       return dp[x][y];32int ans=INT MAX;
33
             for(int i=x;i\langle y;i+\rangle)
34
                       ans=min(ans, MCM(arr, x, i)+MCM(arr, i+1, y)+arr[i]*arr[x-1]*arr[y]);
35
             return dp[x][y]=ans;36
    \mathcal{F}37
    int main()38
39
    \{40
              boost
             int t=1;41
42
             \text{cin}>t;while(t--)43
44
45
                      int n;
46
                       \text{cin}\ranglen;
47
                       member(dp, -1, sizeof(dp));vector<int>arr(n);
48
                       for(int i=0; i<n; i++)49
                               \text{cin}\ranglearr[i];
50
                       cout<<MCM(arr,1,n-1)<<"\n";
51
52
              ł
53
             return 0;
54 }
```
Download as text