More Dynamic Programming
Matrix Chain Multiplication



Matrix Chain Multiplication

® Given some matrices to multiply, determine the
order to multiply them so you minimize the total number
of single element multiplications.

° i.e. Determine the way the matrices are parenthesized.

® First off, it should be noted that matrix multiplication is
associative, but not commutative. But since it is associative,
we always have:

® ((AB)(CD)) = (A(B(CD))), or any other grouping as long as
the matrices are in the same consecutive order.

e BUT NOT: ((AB)(CD)) = ((BA)(DC))



Matrix Chain Multiplication

® |t may appear that the amount of work done won’t
change if you change the parenthesization of the
expression, but we can prove that is not the case!

® Let us use the following example:
o Let A be a 2x10 matrix
o Let B be a 10x50 matrix
o Let C be a 50x20 matrix

® Try (AB)C vs A(BC)

® But FIRST, let’s review some matrix multiplication
rules...



Multiplyting two Matrices ( C = AB)

® Dimension of matrix A =n*m
® Dimension of matrix B= m *|
® Dimension of matrix C = n *| ( how ?)

® Cost of multiplying these two matrices = n *m *|,
how !

A=[a, a, a B =[b,,b,, b,b

ol 202 00 201 Po2 Po3
a, 3, a,] b,b,, b,b;
dyo A Ay b,, b,, by, b,;]

Lets see how many calculations do we make for C



Matrix Chain Multiplication

® Let’s get back to our example: We will show that the way we group matrices when
multiplying A, B, C matters:

o Let A be a 2x10 matrix
o Let B be a 10x50 matrix
o Let C be a 50x20 matrix

e Consider computing A(BC):
> # multiplications for (BC) = 10x50x20 = 10000,
> D =BC, dimension of D = 10 * 20
o # multiplications for A(D) = 2x10x20 = 400
° Total multiplications = 10000 + 400 = 10400.

e Consider computing (AB)C:
o # multiplications for (AB) = 2x10x50 = 1000,
> E = (AB), dimension of E =2 x 50
o # multiplications for (E)C = 2x50x20 = 2000,
o Total multiplications = 1000 + 2000 = 3000



Matrix Chain Multiplication

® Thus, our today is:

® Given a chain of matrices to multiply,
determine the fewest number of
multiplications necessary to compute the
product, also calculate the final answer
matrix



Matrix Chain Multiplication

® The key to solving this problem is noticing the
sub-problem optimality condition:

o If a particular parenthesization of the whole product is optimal,
then any sub-parenthesization in that product is optimal as well.

® Say What?
o If (A (B ((CD) (EF)) ) ) is optimal
> Then (B ((CD) (EF)) ) is optimal as well
> Proof on the next slide...



Matrix Chain Multiplication

® Assume that we are calculating ABCDEF and that the
following parenthesization is optimal:
(A (B((CD) (EF))))
> Then it is necessarily the case that
(B ((CD) (EF)) )
> is the optimal parenthesization of BCDEF.

® Why is this!?
> Because if it wasn't, and say ( ((BC) (DE)) F) was better, then it
would also follow that
(A (((BC) (DE)) F) ) was better than
(A (B((CD) (EF)))
o contradicting its optimality!



Matrix Chain Multiplication

® Our final multiplication will ALWAYS be of the form
© Ay A A) (AL AL A )

® In essence, there is exactly one value of k for which we should "split" our work into two
separate cases so that we get an optimal result.

o Here is a list of the cases to choose from:
(A (A AL A )

Ay A) (A AL A )

Ay ACA) - (Ay AL A

[0}

o]

o

(o]

A
(A

A A D) (ALAL)
A A ) (AL

0

(o]

0

® Basically, count the number of multiplications in each of these choices and pick the
minimum.

> One other point to notice is that you have to account for the minimum number of multiplications
in each of the two products.



Matrix Chain Multiplication

® Consider the case multiplying these 4 matrices:
° A: 2x4
> B: 4x2
> C: 2x3
> D: 3xl

® |. (A)(BCD) - This is a 2x4 multiplied by a 4xI,

> so 2x4x| = 8 multiplications, plus whatever work it will take to
multiply (BCD).

® 2. (AB)(CD) - This is 2 2x2 multiplied by a 2xI,

> so 2x2x| = 4 multiplications, plus whatever work it will take to
multiply (AB) and (CD).



Matrix Chain Multiplication

® Our recursive formula:
> cost(i, j) = cost(i, k) + cost(k + 1, j) +p_, P, P

® Let’s solve it using recursion



24 int dp[1@5][105];

25

26 int MCM(vector<int>&arr,int x,int y)

27 {

28 if(x==y)

29 return 9;

30 if(dp[x][y]!=-1)

31 return dp[x][y];

32 int ans=INT_MAX;

33 for(int i=x;i<y;i++)

34 ans=min(ans,MCM(arr,x,1)+MCM(arr,i+1,y)+arr[i]*arr[x-1]*arr[y]);
35 return dp[x][y]l=ans;

36 }

37

38 int main()

39 {

40 boost

41 int t=1;

42 cin>>t;

43 while(t--)

44 1

45 int n;

46 cin>>n;

47 memset(dp,-1,sizeof(dp));
43 vector<int>arr(n);

49 for(int i=0;i<n;i++)

50 cin>>arr[i];

51 cout<<MCM(arr,1,n-1)<<"\n";
52 }

53 return 9;

54 }
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