Knuth-Morris-Pratt
Algorithm

The problem of String Matching

Given a string ‘'S’, the problem of string matching deals with
finding whether a pattern ‘p’ occurs in ‘S’ and if ‘p’ does occur
then returning position in ‘S’ where ‘p’ occurs.

How does the O(mn) approach
Work

Below is an illustration of how the previously
described O(mn) approach works.

String S abcabaabcabac

Pattern p abaa

Step 1:compare p[1] with S[1]
S

abcabaabcabac

|

P abaa

Step 2: compare p[2] with S[2]
g abcabaabcabac

P abaa

Step 3: compare p[3] with S[3]

S
abcabaabcabac

|

p abaa

Mismatch occurs here..

Since mismatch is detected, shift ‘p’ one position to the left and
perform steps analogous to those from step 1 to step 3. At position
where mismatch is detected, shift ‘p’ one position to the right and
repeat matching procedure.

The Knuth-Morris-Pratt Algorithm

Knuth, Morris and Pratt proposed a linear time algorithm for the string
matching problem.

A matching time of O(n) is achieved by avoiding comparisons with
elements of ‘S’ that have previously been involved in comparison
with some element of the pattern ‘p° to be matched. i.e,
backtracking on the string ‘S’ never occurs

Components of KMP
1. LPS Array
2. KMP matching function

LPS (Longest Proper prefix which is also The KMP Matcher
a suffix) denoted byll later onin

slides. With string ‘'S’, pattern ‘p’ and LPS
array ‘Il as
LPS array is created for pattern string. inputs, finds the occurrence of ‘p’in ‘S’

For each sub-pattern p[0..i] where i = 0 to and returns
m-1, lps]i] stores length of the maximum the number of shifts of ‘p’ after which
matching proper prefix which is also a occurrence is found.
suffix of the sub-pattern pat[0..i].
For eg.
For the pattern “AABAACAABAA”,
lps[]is [0, 1,0,1,2,0,1, 2, 3,4, 5]

Example: compute N for the pattern ‘p’ below:

PP a b a b a ¢ a

Initially: m = length[p] = 7

M) =0
k=0
g 1 2 3 4
Step 1: q = 2, k=0 P @@ a b
n o 0
N] =0
Qa 4 2 3 4
b b
Step2:q =3, k=0, P @b (@)
N3] = 1 o a9 8 A
g 1 2 3 4 b
Step3:q=4,k=1 p a @ a @ a
M[4] =2 e 8 8 2

N

Step4:q=5,k=2
n[is5] =3

Step5:q=6, k=3
n[6] =0

Step6:q=7,k=0
N7} =1

After iterating 6 times, the prefix

function cci;nputation is complete:

©

(&)

Try to generate LPS for this pattern

pattern->bababaaba

Try to generate LPS for this pattern
pattern->b a b a b a a b a

LPS-> 001234012

/7 Fills 1ps[] for given patttern patf[e..Mm-1]
void computelLPSArray(char* pat, int M, int* 1ps)

- £

/7 1length of the previous longest prefix suffix

lg int len = ©;
4

> 1ps[O0] = ©; // 1ps[©] is always ©
S 7/ the loop calculates 1ps[i] for i = 1 to M-21
int i = 1;
0 while (i = M) {
if (pat[i] == pat[len]) {
len++;
1ps[i] = 1en;
i++;
3
else // (patf[i] '= pat[len])
i
/7 This is tricky. Consider the example.
/7 AAACAAAA and 1 = 7. The idea is similar
/7 to search step.
if (lten '= ©) {
1len = 1ps[lilen - 1];

7/ Also, note that we do not increment
7/ i here

¥
else // if (len == ©)
1
1ps[i] = ©;
d++;
¥

lllustration: given a String ‘S’ and pattern ‘p’ as follows:

bacbabababacaca

P ababaca

Let us execute the KMP algorithm to find
whether ‘p’ occurs in ‘S’.

For ‘p’ the prefix function, 1 was computed previously and is as follows:
q 1 2 3 < 5 6 7

p a b A b a ¢ a
K 9 06 1 2 3 31 A

Initially: n = size of S = 15;
m=sizeofp=7

Step1:i=1,9q=0
comparing p[1] with S[1]

S b acbabababawcaahb
I

p a@a b abac a
P[1] does not match with S[1]. ‘p’ will be shifted one position to the right.

Step2:i=2,9q=0
comparing p[1] with S[2]

S D a ¢ babababacaahb
T

D a b ab ac a

P[1] matches S[2]. Since there is a match, p is not shifted.

Step3:i=3,q=1
Comparing p[2] with S[3] p[2] does not match with S[3]

S b acbabababawcaalhb
T

p a b abac a
Backtracking on p, comparing p[1] and S[3]
Step 4:1=4, 9 Zhparing p[1] with S[4] p[1] does not match with S[4]

S b acbabababacaahb

!
P a b ab ac a

Step 5:i=5, q go(r)nparing p[1] with S[5] p[1] matches with S[5]

¢ bacbabababaecaahb

!
P a b ab ac a

Step6:i=6,g=1
Comparing p[2] with S[6] p[2] matches with S[6]

S b ac¢c babababaucaahb

T
D ababaca

Step7:i=7,q=2
Comparing p[3] with S[7] p[3] matches with S[7]

& De@cbaeabavabacaadpbd

I
D a b abac a

Step8:i=8,q=3
Comparing p[4] with S[8] p[4] matches with S[8]

S b aocbabababacaahb

I
P a b ab ac a

Step9:i=9,q=4
Comparing p[5] with S[9] p[5] matches with S[9]

S b a c b ab ababawcaalhb

I
P a b ab ac a

Step 10:i=10,q=5
Comparing p[6] with S[10] p[6] doesn’t match with S[10]

S b acbabababacaahb

T
o ababaca

Backtracking on p, comparing p[4] with S[10] because after mismatch q =1[5] = 3

Step11:i=11,q=4
Comparing p[5] with S[11] p[5] matches with S[11]

S b ac b abababawcaahb

I
P a b ab ac a

Step12:i=12,q=5
Comparing p[6] with S[12] p[6] matches with S[12]

S b a c b ab ababawcaab

!
P a b a b a c a

Step 13:i=13,q=6
Comparing p[7] with S[13] p[7] matches with S[13]

S b ac b abababacaahb
I

P a b ab ac a

Pattern ‘p’ has been found to completely occur in string ‘S’. The total number of shifts
that took place for the match to be found are: i — m = 13 — 7 = 6 shifts.

/7 Prints occurrences of txt[] in pat[]
void KMPSearch(char* pat, char*® txt)
{

int M = strlen(pat);

int N = strilen(txt);

// create lps[] that will hold the longest prefix suffix
// values for pattern
int lps[M];

// Preprocess the pattern (calculate 1lps[] array)
computeLPSArray(pat, M, 1ps);

int 1 = ©; // index for txt[]
int j = ©; // index for pat[]
while (i < N) {
if (pat[j] == txt[i]) {
s bt
i++;

3

if (J = M) {
printf("Found pattern at index %d ", i1 - j);
J = lps[j - 11;

3

// mismatch after j matches
else if (i < N && pat[j] '= txt[i]) {
// Do not match 1ps[0e..1lps[j-1]] characters,
// they will match anyway
it (j '= @)
Jj = lps[i - 1]1;
else
d =13 E5L:

Time Complexity of KMP -> O(M+N)
M=length of pattern
N=Length of text

