

What is a TRIE?

 Tree based data structure used for
Information ReTRIEval task

 Also called as Digital Tree, Prefix tree, Radix Tree

* Trie is used mostly for storing strings in a
compact way. E.g. words in dictionary

* Atries supports pattern matching queries in time
proportional to the pattern size

Standard Tries

* The standard trie for a set of strings S is an ordered
tree such that:

— Each node but the root is labeled with a character
— The children of a node are alphabetically ordered

— The paths from the external nodes to the root yield
the strings of S

« Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

Trie — An ordered Tree
« S={ bear, bell, bid, bull, buy, sell, stock, stop}

TRIE Representation

struct Trie

{
struct Trie*™ S[26]; [la-z or A-Z

bool isEndOfWord;

Tries for number

 Name | Social Security Number (SS#)
Jack | 951-94-1654

Jill | 562-44-2169
Bill | 271-16-3624
Kathy | 278-49-1515
April | 951-23-7625

Bill | 271-16-3624
Kathy | 278-49-1515

0L23456 7 E9

SIS el

BI I I I I | i I I i | C|56‘3-4-I-‘2169|

LTI

W[[TIITLIIL]

N|271-10-2529 G| 27L-16-2%624

H|Z27E49-L5L5

>
o[TTILTITIT]
L
JEONNE I N RN
= o
[T ITITTIT]
e N

Operations

* Insert — top-down traversal
* Delete — bottom-up
» Search — top-down

Inserting into a Trie

e Proceed before as if doing an normal
lookup, adding in new nodes as needed.

e Set the “is word” bit in the final node
visited this way.

Insert Word into TRIE

Insert “their”

rootT
" N “~
z = = { =
| | |
h m 3
| | |
 — = > =
| | /
= wd i
| | |
= = —
|
—

f oY) o= T =N

rTootT

VYo f) = =) =] =0

Code for Insertion of a string into a TRIE

void insert(struct TrieNode *root,

string key)
{

struct TrieNode *pCrawl = root;|

for (int 1 =

; 1 < key.length(); i++)
{

int index = key[i] - 'a’;

;

if (!pCrawl->children[index])

pCrawl->children[index] = getNode();

pCrawl = pCrawl->children[index];

pCrawl->isEndOfWord

= true;

struct TrieNode *getNode(void)
{

struct TrieNode *pNode = new TrieNode;

pNode->isEndOfWord = false;

for (int i = 9; i < ALPHABET_SIZE; i++)
pNode->children[i] = NULL;

return pNode;

Search

* To search a trie for an element with a given key,

— we start at the root and follow a path down the
trie until we either fall off the trie (i.e., we follow a
null pointer in a branch node)

or

— we reach an element node; The path we follow is
determined by the alphabets/digits of the search
key.

Code to check whether a single word
exists in a TRIE

bool search(struct TrieNode *root, string key)

{

struct TrieNode *pCrawl = root;

for (int i = @; i < key.length(); i++)
{
int index = key[i] - 'a’;
if (!pCrawl->children[index])
return false;

pCrawl = pCrawl->children[index];

}

return (pCrawl != NULL && pCrawl->isEndOfWord);

Analysis of Standard Tries

« A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

Applications of Tries

» A standard trie supports the following operations on
a preprocessed text in time O(m), where m = |X|
-word matching:.
find the first occurrence of word X in the text
-prefix matching:.
find the first occurrence of the longest prefix of word X in
the text

« Each operation is performed by tracing a path in the trie
starting at the root

Word Matching with a Trie

« We insert the words of the text into a trie

« Each leaf stores the occurrences of the associated word in the
text

O
O @ ®
@ D o ® o D
& D M @ 1 @ [D @
[[47,58 6 m 02 M @ P
78 30 69 12 [k 84
17, 40,

Tries

Prefix : What is prefix:

* The prefix of a string is nothing but

any n letters n<|S| that can be considered
beginning strictly from the starting of a string.

* For example , the word “abacaba” has the
following prefixes:

a, ab, aba, abac, abaca, abacab, abacaba

Common Prefix

Trie for arr[]l = {he.she, his. hers}

Longest Common Prefix

Let S=S[1],....S[m]and T=T[1],...,T[n] be
two strings over alphabet =

The Longest Common Prefix (LCP) of S
and T is the string a[1],...,.a[k] such that
alil=S[i]=T[i], i=1,...,k and such that
S[k+112T[k+1].

Example: The LCP of
ABCAABCDABCCC and
ABCAABCDACACC is: ABCAABCDA

Suffix

* The suffix of a string is nothing but

any n letters n<|S| that can be considered ending
strictly at the end of a string.

* For example , the word “abacaba” has the
following prefixes:

a, ba, aba, caba, acaba, bacaba, abacaba

Tries and Web Search Engines

* The index of a search engine (collection of all
searchable words) 1s stored mto a compressed trie

 Each leaf of the trie 1s associated with a word and
has a list of pages (URLs) containing that word,
called occurrence list

e The trie 1s kept 1n internal memory

