Bitmask DP

Assignment Problem

Your task will be to calculate number of different assignments of n different topics to n students such that everybody gets exactly one topic he likes.

Input is like grid

At any i th cell value 0 means that student does not likes i th topic.

Topic ID Student ID	1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

At any i th cell value 1 means that student likes i th topic

Topic 1

Student 1

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 1

Student 1

Student 2

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 3

Student 1

Student 2

Student 3

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 1

Student 2

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 1

Student 3

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 1

Student 3

Student 1

Topic 1

Student 3

Student 2

Topic ID Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

Topic 3

Student 3

Student 2

Student 1

Topic ID— Student ID	→ 1	2	3
1	1	0	1
2	0	1	1
3	1	1	1

```
student vector will be initialised by 0 initialy
 student[k] = 0 means kth student has not been assigned some topic
  student[k] = 1 means kth student has been assigned some topic
int total topics,total students;
int solve(int i,vector<int> &student,vector<vector<int> > & likes)
   if(i==total topics+1)
        return 1;
   int ans=0;
   for(int k=1;k<=total_students;k++)</pre>
       if(student[k]==0&&likes[k][i]==1)
            student[k]=1;
            ans+=solve(i+1,student,likes);
            student[k]=0;
   return ans;
```

Working of mask is same as working of student array in previous code

Total number of set bits in mask variable denotes number of topics assigned

If i th bit in mask is set (means =1) then it means that i th student has been assigned the task.

__builtin_popcount(mask) This function returns total number of set bits in mask. This is an inbuilt function of C++.

```
11 total_topics,likes[21][21];
```

11 solve(11 mask)

1l current_topic_number = __builtin_popcount(mask);
if(current_topic_number==total_topics) return 1;

ll count=0;
for(ll j=1;j<=n;j++)</pre>

if(!(mask&(1LL<<j))&&likes[j][current_topic_number]==1)</pre>

```
ll temp=mask;
mask=mask|(1LL<<j);
count+=solve(mask);
mask=temp;
```

return count;

```
11 total_topics,likes[21][21];
11 dp[1100000]; //-----
11 solve(ll mask)
```

<u>í</u>

```
if(!(mask&(1LL<<j))&&likes[j][current_topic_number]==1)</pre>
```

```
11 temp=mask;
mask=mask|(1LL<<j);
count+=solve(mask);
mask=temp;</pre>
```

dp[mask]=count; // -----return count;