
Knapsack DP

Problem Statement
Given weights and values of n items, put these 

items in a knapsack of capacity W to get the 
maximum total value in the knapsack.



Types of Knapsack

• 0-1 knapsack problem

– Items are indivisible; you either take an item or 
not 

• Fractional knapsack problem

– Items are divisible: you can take any fraction of an 
item 



Fractional knapsack

Items as (value, weight) pairs
arr[] = {{60, 10}, {100, 20}, {120, 30}}
Knapsack Capacity, W = 50;

Maximum possible value = 240
by taking items of weight 10 and 20 kg and 2/3 fraction
of 30 kg. Hence total price will be 60+100+(2/3)(120) = 240



Fractional Knapsack Solution 

• An efficient solution is to use Greedy approach. The basic 
idea of the greedy approach is to calculate the ratio 
value/weight for each item and sort the item on basis of this 
ratio. Then take the item with the highest ratio and add them 
until we can’t add the next item as a whole and at the end 
add the next item as much as we can. Which will always be 
the optimal solution to this problem.

• Complexity: ??



Code of Fractional Knapsack



0-1 Knapsack

Example 1: 
val[] = {60, 100, 120};
wt[] = {10, 20, 30};
W = 50;
Output : 220 //maximum value that can be obtained 30 20 weights 20 

and 30 are included.

Example 2: 
val[] = {40, 100, 50, 60};
wt[] = {20, 10, 40, 30};
W = 60;
Output : 200 
// Pick item with weights 30,20,10



0-1 Knapsack Solution 

• Recursion
– A simple solution is to consider all subsets of items and 

calculate the total weight and value of all subsets.

– Complexity : ???

• Dynamic Programming
– We will make 2 state DP . The state DP[i][j] will denote 

maximum value that can achieve using knapsack capacity ‘j-
weight’ considering all values from ‘1 to ith’. So for every ith 
element we have two possibilities that can take place either
• Choose the ith item

• Or not choose the ith item

– Complexity : ???





Code of 0-1 Knapsack



Thank You
Made by Gaurav Katare


