
C L A S S –9

B A S I C S O F C

M N N I T C O M P U T E R C O D I N G C L U B

1 D A R R AY

• An array in C is a collection of homogenous items stored at contiguous memory locations.

• The elements of the array share the same variable name but each element has its own unique
index number.

• An array can be of any type. For example: int, float, char etc. If an array is of type int then it's
elements must be of type int only.

• We can use normal variables (v1, v2, v3, ..) when we have a small number of objects, but if we
want to store a large number of instances, it becomes difficult to manage them with normal
variables. The idea of an array is to represent many instances in one variable.

D E C L A R I N G 1 D A R R AY

For example, float mark[5];

• Here, we declared an array, mark, of floating-point type. And its size is 5. Meaning, it

can hold 5 floating-point values.

• It's important to note that the size and type of an array cannot be changed once it is

declared.

dataType arrayName[arraySize];

I N I T I A L I Z I N G 1 D A R R AY

It is possible to initialize an array during declaration. For example,

int mark[5] = {19, 10, 8, 17, 9};

An array can also be initialized like

int mark[] = {19, 10, 8, 17, 9};

Here, we haven't specified the size. However, the compiler knows its size is 5 as we are initializing it with 5
elements.

A C C E S S I N G 1 D A R R AY E L E M E N T S

• Elements of array can be accessed by indices.

• Array index starts from 0 and goes till size of array minus 1.

Considering the array mark declared in previous slide. The first element is mark[0], the

second element is mark[1] and so on.

1 D A R R A Y
S A M P L E

P R O G R A M

P A S S I N G 1 D
A R R AY T O
F U N C T I O N

• We can pass whole array as an actual

argument to a function. The corresponding

formal argument should be declared as an

array variable of the same data type.

• On the left side is a program to compute

the average of elements of an array.

2 D A R R AY

• An array of arrays is known as 2D array.

• Just like 1D array, 2D array also store homogenous values (i.e. same data type values)

Here, x is a two-dimensional (2d) array. The array can hold 12 elements. This 2D array

can be visualized as a table with 3 rows and each row has 4 columns.

D E C L A R I N G 2 D A R R AY

The syntax to declare the 2D array is given below.

dataType arrayName[rows][columns];

Consider the following example.

int arr[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

I N I T I A L I Z I N G 2 D A R R AY

int arr[2][3] = {{ 1, 3, 0 }, { -1, 5, 9 }};

2D array can also be initialized like

int arr[2][3] = {1, 3, 0, -1, 5, 9};

Note: Although both the above declarations are valid, we recommend you to use the first method as

it is more readable.

We already know, when we initialize a 1D array during declaration, we need not to specify the size of

it. However that’s not the case with 2D array, you must always specify the second dimension even if

you are specifying elements during the declaration.

int arr[][3] = {{1, 3, 0}, {-1, 5, 9}};

2 D A R R A Y
S A M P L E

P R O G R A M

S T R I N G S

• Strings are actually one-dimensional array of

characters terminated by a null character '\0'.

• char greeting[6] = {'H', 'e', 'l', 'l',

'o', '\0'};

• char greeting[] = "Hello";

• Functions of Strings are found in string.h header

file;

S T R I N G
F U N C T I O N S

S T R I N G E X A M P L E 1

S T R I N G
E X A M P L E 2

P O I N T E R S

• The address of the first byte allocated to variable is known as address of variable.

• '&' operator is the "address of" operator in C which returns the address.

• The address operator cannot be used with a constant or an expression

Eg -

int a = 5; - &a Valid

float f = 8.6; - &f Valid

Constant - &26 Invalid

Expression - &(a+f) Invalid

• Pointer variables are used to store the memory address. Used like normal variables.

P O I N T E R S

• The general syntax of declaration of pointer variable is: datatype *p_name;

• The size allocated to all pointer variables is same as they all store integers.

• '*' is used to dereference the pointer

• In the program attached,

• ptr can be used to access the

address of variable a and *ptr can

be used to access its value

• Writing *(&a) and a is same

P O I N T E R
A R I T H M E T I C
• Addition and subtraction of an integer and a

pointer variable is supported

• Pointer variables can also be used for increment

and decrement operation

• The increment/decrement operation changes

the value of pointer variable by the size of

data type that it points to.

• Subtraction of two pointer variables of same base

type returns the number of values present

between them

Eg – int *ptr1 = 2000, *ptr2 = 2020;

printf("%u\n", ptr2-ptr1); Output : 5

C O M B I N AT I O N O F D E R E F E R E N C E
A N D I N C R E M E N T / D E C R E M E N T

• The dereference operator (*), address of operator (&) and increment/decrement have

same precedence and are Right to Left Associative.

Expression Evaluation

x = *ptr++ x = *ptr ptr = ptr + 1

x = *++ptr ptr = ptr + 1 x = *ptr

x = (*ptr)++ x = *ptr *ptr = *ptr + 1

x = ++*ptr *ptr = *ptr + 1 x = *ptr

P O I N T E R T O
P O I N T E R

• Pointer variable contains an address,

and this variable takes space in

memory so it itself has an address

• A pointer-to-pointer variable is used to

store the address of a pointer variable

• The general syntax of declaration of

pointer variable is:

datatype **pp_name;

