

1D ARRAY

An array in Cis a collection of homogenous items stored at contiguous memory locations.

The elements of the array share the same variable name but each element has its own unique
index number.

* An array can be of any type. For example: int, float, char etc. If an array is of type int then it's
elements must be of type int only.

« We can use normal variables (v1, v2, v3,..) when we have a small number of objects, but if we
want to store a large number of instances, it becomes difficult to manage them with normal
variables. The idea of an array is to represent many instances in one variable.

Arraysize=5

Indices — 0 1 & 3 4

DECLARING 1D ARRAY

For example, float mark[5];

« Here, we declared an array, mark, of floating-pointtype. And its size is 5. Meaning, it
can hold 5 floating-point values.

* It'simportantto note that the size and type of an array cannot be changed once it is
declared.

INITIALIZING 1D ARRAY

It is possible to initializean array during declaration. For example,
int mark[5]1={19, 10, 8,17, 9};
An array can also be initialized like

int mark[]={19, 10, 8,17, 9}

Here, we haven't specified the size. However, the compiler knows its size is 5 as we are initializingit with 5
elements.

mark[0] mark[1] mark[2] mark[3] mark][4]

19 10 8 17 9

ACCESSING 1D ARRAY ELEMENTS

« Elements of array can be accessed by indices.
 Array index starts from 0 and goes till size of array minus 1.

Consideringthe array mark declared in previous slide. The first elementis mark[0], the
second elementis mark[1]and so on.

mark[0] mark[1] mark[2] mark[3] mark[4] o] A el o Ge

mark[1] 1s equal to 10
mark[2] 1s equal to 8

19' 10 B 17 g mark[3] 1s equal to 17

mark[4] 1s equal to 9

1D ARRAY
SAMPLE
PROGRAM

<stdio.h>

int main()

{

int values[5];
int 1 = 9;

printf("Enter 5 integers: ");
(1 ;1 < 55 ++1)

{

}

scanf("%d", &values[i]);

printf("Displaying integers: ");

(i =8; i< 5; ++1)

printf (" ", values[i]);

<stdio.h>

double getAverage(int arr[], int n)

C o ames PASSING 1D

double avg;

ARRAY TO
}
FUNCTION

int main()

{

}

int balance[5] = {1eee, 2, 3, 17, 50};
double avg = getAverage(balance, 5);

printf("Average value is: %.2f\n", avg); argumentto a function.The corresponding

e-

>

* We can pass whole array as an actual

formal argument should be declared as an
array variable of the same data type.

* Ontheleftside isa programto compute

the average of elements of an array.

Average value is: 214.48
[Finished in ©.3s]

2D ARRAY

« An array of arrays is known as 2D array.
 Justlike 1D array, 2D array also store homogenous values (i.e. same data type values)

Here, x is a two-dimensional (2d) array. The array can hold 12 elements. This 2D array
can be visualized as a table with 3 rows and each row has 4 columns.

Column Column Column

1 2 3

x[@][3]

x[@][2]

x[@][1]

x[e][e]

x[1][e] = x[1][1] @ x[1][2] @ x[1][3]

x[2][e] = x[2][1] @ x[2][2] @ x[2][3]

DECLARING 2D ARRAY

The syntax to declare the 2D array is given below.

Consider the following example.
int arr[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

INITIALIZING 2D ARRAY

intarr[2][3]={{1,3,0}L{-1,5 91
2D array can also be initialized like
intarr[2][3]={1, 3,0,-1,5, 9%

Note: Although both the above declarations are valid, we recommend you to use the first method as
it is more readable.

We already know, when we initialize a 1D array during declaration, we need not to specify the size of
it. However that’s not the case with 2D array, you must always specify the second dimension even if
you are specifying elements during the declaration.

intarr[][3]={{1, 3, 0},{-1, 5, 9}}

#include <stdio.h>
main()

r, ¢; 1, J;
printf("Enter the number of rows ");
scanf("%d", &r);
printf("Enter the number o
scanf("%d", &c);

arr[r][c];
printf("Enter the elements of 2D array\n");
for (1 =0; 1 < r; i++) {

—

for (int j = @; j < ¢; j++) {

2D ARRAY s

}

printf(“"The elements of 2D array are:\n");
for (i=0;1<r; i+) {

—

—

columns ");

for (int j = @; j < ¢; j+) {

P R O G R A M : printf("%d ", arr[il[j]);

printf{"\n");
}

return @;

TERMIMNAL

PS C:\Users\DELL\Desktop> gcc .\sample.c
PS C:\Users\DELL\Desktap> .\a.exe

Enter the number of rows 2

Enter the number of columns 3

Enter the elements of 2D array
123456

The elements of 2D array are:

122

4156

STRINGS

Strings are actually one-dimensional array of Index
characters terminated by a null character \0'.

Variable
char greeting[6] = {'H', 'e', '1', '1",
1 0 1 , L} \@ 1 };

Address

char greeting[] = "Hello";

Functions of Strings are found in string.h header
file;

\0

23451

Ow23452

Ox23453

Om23454

Ox23455

Ox23456

STRING

FUNCTIONS

Sr.No.

Function & Purpose

strepy(s1, s2);

Copies string s2 into string s1.

strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

strien(s1);

Returns the length of string s1.

stremp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

strstr(s1, s2),

Returns a pointer to the first occurrence of string s2 in string s1.

lude<stdio.h>»
main () {

greeting[6] = {'H", ‘e, '1", ‘1", ‘o', °
printf(“Greeting message: %s\n", greeting);

scanf("%s" ,greeting);

“%s \n",greeting);

Greeting message: Hello
heyHi
heyHi

STRING EXAMPLE 1

strepy(str3, stril);
printf{

STRING
EXAMPLE 2 b

len = strlen(stril);
printf(

a;

strcpy(str3, strl) : Hello

strcat{ strl, str2): HelloWorld

strlen(strl) : 18

]

POINTERS

The address of the first byte allocated to variable is known as address of variable.

'&"' operatoris the "address of" operatorin C which returnsthe address.

The address operator cannot be used with a constant or an expression

Eg -

inta=>5; - &a Valid
floatf = 8.6; - &f Valid
Constant - &26 Invalid
Expression - &(a+f) Invalid

Pointer variables are used to store the memory address. Used like normal variables.

POINTERS

The general syntax of declaration of pointer variable is: [eElElaelshd e Elggl=F

The size allocated to all pointer variables is same as they all store integers.

'*! is used to dereference the pointer

In the program attached,
* ptr can be used to accessthe
address of variable a and *ptr can
be used to access its value

.. . , *ptr2 = ptr;
* Writing *(&a) and a is same printf("Value of ptr2 : %u\n",

printf(“"Value of data at address ptr is: %d
return @;

POINTER
ARITHMETIC

« Addition and subtraction of an integer and a
pointer variable is supported

e Pointer variables can also be used for increment
and decrement operation

* The increment/decrement operation changes
the value of pointer variable by the size of
data type that it points to. PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

$ gcc -w test.c

 Subtraction of two pointer variables of same base [
01d value of pi : 786925444
type returnsthe number of values present 0ld value of pd : 786925448
01d value of pc : 786925443

between them

New value of pi : 786925448
New value of pd : 786925464

Eg - int *ptr1 = 2000, *ptr2 = 2020; e

printf("%u\n", ptr2-ptr1); Output:5

COMBINATION OF DEREFERENCE
AND INCREMENT/DECREMENT

* The dereference operator (*), address of operator (&) and increment/decrementhave
same precedence and are Rightto Left Associative.

X = *ptr++ X = *ptr ptr = ptr + 1

X = *++ptr ptr = ptr + 1 X = *ptr

X = (*ptr)++ X = *ptr *ptr = *ptr + 1
X = ++*ptr *ptr = *ptr + 1 X = *ptr

POINTER TO
POINTER

e Pointer variable contains an address,
and this variable takes space in
memory so it itself has an address

* A pointer-to-pointer variable is used to
store the address of a pointer variable

« The general syntax of declaration of
pointer variable is:

datatype **pp_name;

I

#include<stdio.h>
main()
a = 5;
*ptr = &a;
*pptr = &ptr;

printf(“Address of

printf(™V
printf(’
printf(’

printf("Address o

return 8;

$ pcc -w test.c
% .fa.out
Address of a
Value of ptr
Address of ptr
vValue of pptr
Address of pptr:

3 1

TERMINAL

&a);
ptr);
&ptr);
pptr);
&pptr);

