
C L A S S –1 0

B A S I C S O F C

M N N I T C O M P U T E R C O D I N G C L U B

C O M B I N AT I O N O F D E R E F E R E N C E
A N D I N C R E M E N T / D E C R E M E N T

• The dereference operator (*), address of operator (&) and increment/decrement have

same precedence and are Right to Left Associative.

Expression Evaluation

x = *ptr++ x = *ptr ptr = ptr + 1

x = *++ptr ptr = ptr + 1 x = *ptr

x = (*ptr)++ x = *ptr *ptr = *ptr + 1

x = ++*ptr *ptr = *ptr + 1 x = *ptr

P O I N T E R T O
P O I N T E R

• Pointer variable contains an address,

and this variable takes space in

memory so it itself has an address

• A pointer-to-pointer variable is used to

store the address of a pointer variable

• The general syntax of declaration of

pointer variable is:

datatype **pp_name;

**

P O I N T E R W I T H 1 D A R R AY S

Consider an array

int arr[] = {1,2,3,4,5};

Here arr is a pointer to the first element aka arr is a pointer to int or (int*)

Remember
arr = &arr[0]
arr + 1 = &arr[1]
arr + 2 = &arr[2]
arr + 3 = &arr[3]

Thus
*(arr) = arr[0]
*(arr + 1) = arr[1]
*(arr + 2) = arr[2]
*(arr + 3) = arr[3]

int *p;
int arr[] = {11, 22, 33, 44, 55};
p = arr;

We can do p++, p--
but we can not do arr++, arr--

• Call by value

void swapx(int x, int y)

{

int t;

t = x;

x = y;

y = t;

printf("x=%d y=%d\n", x, y);

}

P O I N T E R A N D F U N C T I O N S

• Call by reference

void swapx(int* x, int* y)

{

int t;

t = *x;

*x = *y;

*y = t;

printf("x=%d y=%d\n", *x, *y);

}How can we return more than one value from function?

void pointer

• The void pointer in C is a pointer which is not associated with any data types.

• It is a general-purpose pointer.

• It can point to any data type.

int a = 7;

float b = 7.6;

void *p;

p = &a;

printf("Integer variable is = %d", *((int*) p));

p = &b;

printf("\nFloat variable is = %f", *((float*) p));

D Y N A M I C M E M O R Y A L L O C AT I O N

• Malloc

ptr = (cast-type*) malloc(byte-size)

D Y N A M I C M E M O R Y A L L O C AT I O N

• Calloc

ptr = (cast-type*)calloc(n,element-size);

src: https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/

S T R U C T U R E

A structure is a user-defined data type available in C that allows to combining data items

of different kinds. Structures are used to represent a record.

Syntax:

struct [structure name]

{

member definition;

member definition;

...

member definition;

};

struct struct_example
{

int integer;
float decimal;
char name[20];

};

Creating an object:
struct struct_example s={10,10.0,"abcdef"};

Access(read/write):
s.integer
s.decimal
s.name

U N I O N

A union is a special data type available in C that allows storing different data types in the

same memory location. You can define a union with many members, but only one

member can contain a value at any given time.

Syntax:

union [union name]

{

member definition;

member definition;

...

member definition;

};

union union_example
{

int integer;
float decimal;
char name[20];

};

Creating an object:
union union_example u;

Access(read/write):
u.integer
u.decimal
u.name

W H A T ' S N E X T ?

M N N I T C O M P U T E R C O D I N G C L U B

