

COMBINATION OF DEREFERENCE
AND INCREMENT/DECREMENT

* The dereference operator (*), address of operator (&) and increment/decrementhave
same precedence and are Rightto Left Associative.

X = *ptr++ X = *ptr ptr = ptr + 1

X = *++ptr ptr = ptr + 1 X = *ptr

X = (*ptr)++ X = *ptr *ptr = *ptr + 1
X = ++*ptr *ptr = *ptr + 1 X = *ptr

POINTER TO
POINTER

e Pointer variable contains an address,
and this variable takes space in
memory so it itself has an address

* A pointer-to-pointer variable is used to
store the address of a pointer variable

« The general syntax of declaration of
pointer variable is:

datatype **pp_name;

I

#include<stdio.h>»
main()
a = 5;
*ptr = &a;
**pptr = &ptr;

printf(“Address of

printf(™V
printf(’
printf(’

printf("Address o

return 8;

$ pcc -w test.c
% .fa.out
Address of a
Value of ptr
Address of ptr
vValue of pptr
Address of pptr:

3 1

TERMINAL

&a);
ptr);
&ptr);
pptr);
&pptr);

POINTER WITH 1D ARRAYS

5000 5004 5008 5012 5016

Consider an array
JAEI RN E
int arr[] = {1,2,3,4,5};

my_arr[0] my_arr{1] my_arr[2] my_arr[3] my_arr[4]
Here arr is a pointer to the first element aka arr is a pointer to int or (int*)

Remember

arr = &arr[0] int *p;

arr + 1 = &arr[1] intarr[]={11, 22, 33, 44, 55};
arr+ 2 = &arr[2] p=arr;

arr+ 3 = &arr[3]

We can do p++, p--

Thus but we can not do arr++, arr--

*(arr) = arr[0]

*arr+ 1) =arr[1]
*(arr + 2) = arr[2]
*(arr + 3) = arr[3]

POINTER AND FUNCTIONS

 Call by value Call by reference
void swapx(int x, int y) void swapx(int* x, int* y)
¢ {
int t; .
t = x; int t;
X =Y; t =X
y = t; kX = *y;
printf("x=%d y=%d\n", X, y);
} *y = t;

printf("x=%d y=%d\n", *x, *y);

How can we return more than one value from function?

DYNAMIC MEMORY ALLOCATION

void pointer
* The void pointerin C is a pointer which is not associated with any data types.
* Itis a general-purpose pointer.

* It can pointto any data type.
int a = 7;
float b = 7.6;

void *p;

p = &a;
printf("Integer variable is = %d", *((int*) p));

p = &b;
printf("\nFloat variable is = %f", *((float*) p));

DYNAMIC MEMORY ALLOCATION

« Malloc e Calloc

ptr = (cast-type*) malloc(byte-size) ptr = (cast-type*)calloc(n,element-size);

Malloc() Calloc()

int* ptr = (int*) malloc (5* sizeof (int)); int* ptr = (int*) calloc (5, sizeof (int));
|

T

v
S E— pr=(T 1 []]
- > +~4h—+
- 20 bytes of memory -

STRUCTURE

A structureis a user-defined data type available in C that allows to combining data items
of different kinds. Structures are used to representa record.

Syntax:
struct [structure name] ?trUCt struct_example
{ int integer;
member definition; float decimal;
char name[20];
member definition; };

Creating an object:
member definition; struct struct _example s={10,10.0,"abcdef"};

}s

Access(read/write):
s.integer
s.decimal

s.name

UNION

A union is a special data type available in C that allows storing different data types in the
same memory location. You can define a union with many members, but only one
member can contain a value at any given time.

Syntax: union union_example
union [union name] { . .

int integer;
{ float decimal;

member definition; char name[20];

}s
member definition;
Creating an object:

union union_example u;

member definition;

Access(read/write):
u.integer

u.decimal

u.name

}s

