
Lesson: Introduction 
To Git 

  March 7, 2018

- MNNIT COMPUTER CLUB 



Audience

● Everyone having a knack for 
development

● !(Point 1) too



Objective

To make you answer the following questions yourselves:

● What is Git?
● Why Git? 
● How to use Git?
● Is it worth learning Git?

And finally to turn you into a cool git ninja like the one shown 
on left.



Reference ● Pro Git Book -  by Scott Chacon 
and Ben Straub

● How to use Git And Github - 
Udacity Course

● Git started with Github - Udemy 
Course

● Lots of online tutorials ;-)



What is git ?
According to Oxford English Dictionary git is a noun 
which means an unpleasant man or a contemptible 
person. 

But what this unpleasant man has to do with 
computer science? 

The story finds it way back to Linus Torvald, creator 
of Linux and git. Linus often calls himself an egotistical 
bastard and loves to name his projects after himself. 
Thus giving us the name git.



                                 What Actually git Is ?                
● Git is a Distributed Version Control and Source Code 

Management System with an emphasis on speed.

● Git was initially designed and developed by Linus Torvalds for 
Linux kernel development.

●  Git is a free software distributed under the terms of the GNU 
General Public License version 2.

● Git serves the need to collaborate with developers on other 
systems.



Version Control System

Version control is a system that 
records changes to a file or set of 

files over time so that you can recall 
specific versions later.



Types Of Version Control System

● Local version control system :

         
Local VCSs  had a simple database that kept all 
the changes to files under revision(version) 
control. Ex- RCS, SCCS, etc.  
Key point : Whenever you have the entire 
history of the project in a single place, you risk 
losing everything.



Types of Version Control System

● Centralized version control 
system(CVCS)

They have a single server that contains all the 
versioned files, and a number of clients that check 
out files from that central place. Ex- CVCS, Integrity, 
etc.
Key Point : Single point of failure



Types of Version Control System

● Distributed/Decentralized version 
control system (DVCS)

DVCS  is a form of version control where the complete 
codebase - including its full history - is mirrored on every 
developer's computer.
Eg.  Git, Mercurial, Bazaar, etc.
Key Point : If any server dies, and these systems were 
collaborating via that server, any of the client repositories 
can be copied back up to the server to restore it.



Why Git?



Because It’s Cool - (00)

Other systems (CVS, Subversion, Perforce, 
Bazaar, and so on) think of the information 
they store as a set of files and the changes 
made to each file over time (this is commonly 
described as delta-based version control).

Git basically takes a picture of what all your 
files look like at that moment and stores a 
reference to that snapshot. Git thinks about 
its data more like a stream of snapshots.



Because It’s Cool -(01)

● Most operations in Git need only local files and 
resources to operate — generally no 
information is needed from another computer 
on your network.

● CVCS have that network latency overhead.
● This makes Git surprisingly fast.



Because It’s Cool -(10)

● Everything in Git is check-summed before it is 
stored and is then referred to by that 
checksum. This means it’s impossible to change 
the contents of any file or directory without 
Git knowing about it.

● Uses 40 character SHA-1 Hash like 
24b9da6552252987aa493b52f8696cd6d3b0
0373



Because It’s Cool -(11)

As with any VCS, you can lose or mess up changes 
you haven’t committed yet, but after you commit a 
snapshot into Git, it is very difficult to lose, 
especially if you regularly push your database to 
another repository.



How to use Git?



10 mins

Basics 
Terminology

10 mins

Installation+Getting 
the Git repo 

30 mins

Add+Commit

30 mins

Branch

15 mins

Intro to next 
class+Doubts



Basic Terminology

● Git Directory- is where Git stores the 

metadata and object database for your 
project. This is the most important part of 
Git, and it is what is copied when you clone 
a repository from another computer. In 
standard terminology it is often referred as 
Repository. 



Basic Terminology (Contd.)

● The Three States- 
○ Committed means that the data  is safely stored in your 

local database.
○ Modified means that you have changed the file but have 

not committed it to your database yet.
○ Staged means that you have marked a modified file in its 

current version to go into your next commit snapshot. The 
staging area(Index) is a file, generally contained in your Git 
directory, that stores information about what will go into 
your next commit. 



Basic Terminology (Contd.)

● Working Tree- is a single checkout of one version of 

the project. These files are pulled out of the 
compressed database in the Git directory and placed 
on disk for you to use or modify.

● Commit- Commit holds the current state of the 
repository. A commit is also named by SHA1 hash. It 
is the snapshot of a repository at a particular 
instance.

● Branch- Branches are used to create another line of 
development.



Basic Workflow

1. You modify files in your working tree.

2. You selectively stage just those changes you 
want to be part of your next commit, which adds 
only those changes to the staging area.

3. You do a commit, which takes the files as they 
are in the staging area and stores that snapshot 
permanently to your Git directory.







Installation

1. Fedora or CentOS

sudo dnf install git-all

  2.     Debian-based  distribution like Ubuntu

sudo apt-get install git-all

  3.     Arch-based distribution like Manjaro <3

             sudo pacman -S git



Set-up

● git config --global user.name "<your username>"
○ Check- git config user.name → gives <your username> as 

output 

● git config --global user.email “<your email>”
● git config --global  user.password “<your password>”
● Optional:

○ git config --global core.editor emacs

○ git config --list - lists settings



Creating & Getting a Git Repository

● If you want to get a copy of an existing Git repository
○ git clone https://github.com/username/repo_name.git

○ This topic will be covered in detail later(during GitHub classes).

● If you want to control an existing local directory using Git VCS:
○ Open the terminal in the desired directory

○ Type: git init

○ This creates a new subdirectory named .git that contains all of your necessary repository files 

— a Git repository skeleton.

 



Recording Changes 
● Untracked Files- Files neither in the last snapshot(commit) nor in the 

staging area
● Tracked Files- These can be in three states: unmodified, modified and 

staged.



Important commands for 
Recording and all...
● git status- This command can be used to check the status of recorded 

changes.
● git add <file_name/direcrory_name>- This command can be used to add a 

particular file/directory to staging area.
● git add -A- This command adds all changes to the staging area.

❖ Read yourself git status -s, gitignore



git  diff [<a> <b>]

● [] → optional
● Compares state <b> to <a> → That is whatever is added to 

<b> is shown with ++ and removed with --
● If a=ᶎ, b=ᶎ  → compares the content of working directory 

to staging area that is, if something is added to the working 
directory it is shown with ++ and so on. Its equivalent to a= 
staging area and b=working directory

●  If a=commit_old, b=commit_new → Shows what has been 
added to commit_new as compared to commit_old

● If git diff --staged →  compares staging area to last commit 



It’s important to note that git diff by itself doesn’t show all 
changes made since your last commit— only changes that are still 
unstaged. If you’ve staged all of your changes, git diff will give you 
no output.



Committing Changes

● The commit records the snapshot you set up in your staging area.
● Type: git commit
● Hit Enter key
● This will open an Editor window where you can write the commit message 

describing the commit.
● git  commit -m “Message for commit” → is used for inline committing
● git commit -a -m “Skips the usage of the staging area” → Directly adds the 

track files to the staging area and commits



Removing Files

git rm <file_name> allows you to delete the file from the staging area and working 
directory.

❖ How is it different from rm <file_name>?
➢ <file_name> shows up under the “Changes not staged for commit” (that is, unstaged) area of 

your git status output

➢ git rm --cached <file_name> → for keeping file in hdd and but avoiding it from staging area 

(like gitignore)

➢ See git rm -f <file_name>



Commit History
● git log lists the commits made in that repository in reverse chronological 

order — that is, the most recent commits show up first.
● Commits are in the SHA form.
● git  commit --amend - for adding the new staged changes to the last commit 
● git reset HEAD <file_name> - for unstaging  a file
● git checkout <commit_id/name> - for moving to any previous commit. The 

repo. structure will become same as the snapshot corresponding the commit. 
But remember commits after that commit will then be erased from the 
commit log.

● git show <commit_id/name>- shows  description of the commit

  



Assignment

1. Create Github account.
2. Create a local repository on your system  named 

<Your Github UserName>.github.io
3. Add an index.html file in that repo and then write a 

brief description about yourself in that file. 

( Please make sure that you commit at regular intervals 
while editing index.html file)


