
Introduction to Flutter
MNNIT Computer Coding Club



Objective
To make you answer the following questions yourselves:

1. Why to learn Flutter?
2. What actually is Flutter?
3. How to develop your first Flutter app?
4. What is a Widget?
5. What is a Container?
6. What is a Layout?



Reference
1. Flutter Docs: https://flutter.dev/docs
2. Lots of online tutorials ;)

https://flutter.dev/docs


Introduction to Flutter
According to Wikipedia, Flutter is an open-source UI software development kit 
created by Google. It is used to develop cross platform applications for 
Android, iOS, Linux, Mac, Windows, Google Fuchsia, and the web from a single 
codebase.

Dart programming language is used to code Flutter.



Introduction to Dart
1. Dart is a client-optimized language for fast apps on any platform.
2. Dart is free and open source.
3. Dart is a reactive language that talks similar to python in terms of ease of 

coding while keeping the power of native java under the hood.



History of Flutter
Flutter launched as a project called Sky which at the beginning worked only on 
Android. Flutter’s goal is enabling developers to compile for every platform 
using its own graphic layer rendered by the Skia engine.

First described in 2015, Flutter was released in May 2017.





History of Flutter
On March 3, 2021, Flutter Engage Edition: 2.0 was released.

Currently as of 25th October Flutter 2.5.3 is the latest version.



Installation
Find the installation instructions here: 
https://flutter.dev/docs/get-started/install

https://flutter.dev/docs/get-started/install


Why Flutter?
1. One codebase for iOS, Android, Web and Desktop.
2. Flutter is the only mobile SDK that provides reactive views without 

requiring a JavaScript bridge.
3. Flutter apps look and feel great.
4. Make a change in the app and see them in the blink of an eye. All thanks 

to Hot-Reload.



Widgets
Everything in Flutter is a Widget.

1. Widget is a description of a part of UI. Each element on a screen of the 
Flutter app is a widget.

2. In flutter, Widget is a way to declare and construct UI.
3. Flutter widgets are built using a modern framework that takes inspiration 

from React.
4. If you are familiar with the Android development then you might make 

the immediate connection with the views.
5. But dear like view, Widget is not just a piece of UI. Widget is a lot more 

than just structural elements like buttons.



Central Idea of Widget
1. The central idea is that you build your UI out of widgets.
2. Widgets describe what their view should look like given their current 

configuration and state.
3. When a widget’s state changes, the widget rebuilds its description, which 

the framework diffs against the previous description in order to 
determine the minimal changes needed in the underlying render tree to 
transition from one state to the next.



Hello World Flutter App
1. The minimal Flutter app simply calls the runApp() function with a widget.
2. The runApp() function takes the given Widget and makes it the root of the 

widget tree. 
3. In this example, the widget tree consists of two widgets, the Center widget 

and its child, the Text widget. 



Categories of Widget
1. There are mainly 14 categories in which the flutter widgets are divided. 

These include Input, Scrolling, Assets etc.
2. You can visit https://flutter.dev/docs/development/ui/widgets to have a 

look on them.
3. We will discuss few basic widgets here.

https://flutter.dev/docs/development/ui/widgets


Text
The Text widget lets you create a run of styled text within your application.



Row and Column
These flex widgets let you create flexible layouts in both the horizontal (Row) 
and vertical (Column) directions. The design of these objects is based on the 
web’s flexbox layout model.



Container
1. The Container widget lets you create a rectangular visual element.
2. A container can be decorated with a BoxDecoration, such as a 

background, a border, or a shadow.
3. A Container can also have margins, padding, and constraints applied to its 

size.



Material Components
1. Be sure to have a uses-material-design: true entry in the flutter section of 

your pubspec.yaml file.
2. It allows you to use the predefined set of Material icons.
3. Many Material Design widgets need to be inside of a MaterialApp to 

display properly, in order to inherit theme data. Therefore, run the 
application with a MaterialApp.

4. For using Material Widgets, refer: 
https://flutter.dev/docs/development/ui/widgets/material

https://flutter.dev/docs/development/ui/widgets/material


Handling Gestures
1. Most applications include some form of user interaction with the system.
2. The first step in building an interactive application is to detect input 

gestures. 
3. See how that works by creating a simple button.



Gesture Detector
1. The GestureDetector widget doesn’t have a visual representation but 

instead detects gestures made by the user. 
2. When the user taps the Container, the GestureDetector calls its onTap() 

callback.
3. You can use GestureDetector to detect a variety of input gestures, 

including taps, drags, and scales.
4. Many widgets use a GestureDetector to provide optional callbacks for 

other widgets. For example, the IconButton have onPressed() callback that 
is triggered when the user taps the widget.

5. For details refer: 
https://flutter.dev/docs/development/ui/advanced/gestures

https://flutter.dev/docs/development/ui/advanced/gestures


Changing widgets in response to user input
1. We want to build a simple app in which we have a button with a text 

(initially this is 0). Everytime, we press the button, we will increment the 
text by 1.

2. So far, we have used only stateless widgets. 
3. In order to build more complex experiences—for example, to react in 

more interesting ways to user input—applications typically carry some 
state. 

4. Flutter uses StatefulWidgets to capture this idea. 





Thank You.


