
Flutter Development
MNNIT Computer Coding Club

Objective
To make you answer the following questions yourselves:

1. How stateful widget works?
2. How to draw a widget tree?
3. How can you layout a widget?
4. What is the difference between a responsive app and an adaptive app?
5. How to build a responsive app?
6. How to build an adaptive app?
7. How Navigation works in Flutter?

Stateless widgets
1. Stateless Widgets in Flutter are those widgets whose state once created

cannot be changed.
2. In simple words, if a widget doesn’t do anything it is a Stateless Widget.

They are static in nature.
3. We use it when the UI relies on the information inside the object itself.
4. You can also say that stateless widgets are “DATALESS” widgets. As they

don’t store any real-time data.
5. For example, if you have a simple Text widget on the screen, but it doesn’t

do anything then its Stateless Widget.

Stateful Widgets
1. A Stateful widget maintains data and responds to whatever the data does

inside the application.
2. It is a mutable widget, so it is drawn multiple times in its lifetime.
3. In simple words, if a widget does anything then its Stateful Widget.
4. A Stateful widget is dynamic in nature. That means it can keep track of

changes and update the UI based on those changes.
5. We use this when the user dynamically updates the application screen.
6. For example, If you press a button and it performs any task its a Stateful

Widget.

State
1. State is information that can be read synchronously when the widget is

built and might change during the lifetime of the widget.
2. State objects are created by the framework by calling the

StatefulWidget.createState method when inflating a StatefulWidget to
insert it into the tree.

3. Why Are StatefulWidget and State Separate Classes? In one word:
performance.

4. The State objects are long lived, but StatefulWidgets (and all Widget
subclasses) are thrown away and rebuilt whenever configuration changes.

Life cycle of Stateful widget

Life cycle : Constructor
This function is not part of the life cycle, because this time the State of the
widget property is empty, if you want to access the widget properties in the
constructor will not work. But the constructor must be the first call.

Life cycle : createState
When Flutter is instructed to build a StatefulWidget, it immediately calls
createState().

Life cycle : initState
1. Called when this object is inserted into the tree.
2. When inserting the render tree when invoked, this function is called only

once in the life cycle. Here you can do some initialization, such as
initialization State variables.

3. initState is called once and only once. It must called super.initState().

Life cycle : setState
1. The setState() method is called often from the Flutter framework itself and

from the developer.
2. Notify the framework that the internal state of this object has changed.
3. Calling setState notifies the framework that the internal state of this

object has changed in a way that might impact the user interface in this
subtree, which causes the framework to schedule a build for this State
object.

Life cycle : didChangeDependencies
1. Called when a dependency of this [State] object changes.
2. This method is called immediately after initState on the first time the

widget is built.

Life cycle : didUpdateWidget
1. Called whenever the widget configuration changes.
2. If the parent widget changes and has to rebuild this widget (because it

needs to give it different data), but it's being rebuilt with the same
runtimeType, then this method is called.

3. This is because Flutter is re-using the state, which is long lived.
4. In this case, you may want to initialize some data again, as you would in

initState.

Life cycle : deactive
1. Called when this object is removed from the tree. Before dispose, we will

call this function.
2. But it might be reinserted before the current frame change is finished.
3. This method exists basically because State objects can be moved from

one point in a tree to another.

Lifecycle : dispose
1. Called when this object is removed from the tree permanently.
2. This method is where you should unsubscribe and cancel all animations,

streams, etc.
3. This stage of the lifecycle is terminal: there is no way to remount a State

object that has been disposed.
4. After the framework calls dispose, the State object is considered

unmounted and the mounted property is false.
5. It is an error to call setState at this point.

Life cycle : didChangeAppLifecycleState
Called when the system puts the app in the background or returns the app to
the foreground.

Layouts in Flutter
1. The core of Flutter’s layout mechanism is widgets.
2. In Flutter, almost everything is a widget - images, icons, and text that you

see in a Flutter app are all widgets.
3. But things you don’t see are also widgets, such as the rows, columns, and

grids that arrange, constrain, and align the visible widgets.
4. You create a layout by composing widgets to build more complex widgets.

Widget Tree
1. The widget tree is how developers create their user interface; developers

position widgets within each other to build simple and complex layouts.
2. Widgets are arranged into a tree of parent and child widget.
3. Widgets are nested inside of each other to form your app.
4. The Entire widget tree forms a layout that you see on the screen.

Layout a Widget
1. How do you lay out a single widget in Flutter?
2. We will learn this with a Hello World App example.

Step 1 : Select a Layout widget
1. Choose from a variety of layout widgets based on how you want to align

or constrain the visible widget.
2. For details of Layout widgets:

https://flutter.dev/docs/development/ui/widgets/layout
3. This example uses Center which centers its content horizontally and

vertically.

https://flutter.dev/docs/development/ui/widgets/layout

Step 2 : Create a Visible Widget
1. Those widgets which will be visible to you are called as visible widgets.
2. For example, a Text, or an Image, or an Icon etc.
3. This example uses Text which will display Hello World.

Step 3 : Add the visible widget to the layout widget
1. All layout widgets have either of the following:

a. A child property if they take a single child—for example, Center or
Container

b. A children property if they take a list of widgets—for example, Row,
Column, ListView, or Stack.

2. In our case, we will make our Text widget child of Center widget.

Step 4 : Add the layout widget to the page
1. A Flutter app is itself a widget, and most widgets have a build() method.
2. Instantiating and returning a widget in the app’s build() method displays

the widget.
3. For a Material app, you can use a Scaffold widget; it provides a default

banner, background color, and has API for adding drawers, snack bars,
and bottom sheets.

4. Then you can add the Center widget directly to the body property for the
home page.

Lay out multiple widgets vertically and horizontally
1. One of the most common layout patterns is to arrange widgets vertically

or horizontally.
2. You can use a Row widget to arrange widgets horizontally, and a Column

widget to arrange widgets vertically.
3. To create a row or column in Flutter, you add a list of children widgets to a

Row or Column widget.
4. In turn, each child can itself be a row or column, and so on.
5. Let’s see an example for the same.

Aligning widgets
1. You control how a row or column aligns its children using the

mainAxisAlignment and crossAxisAlignment properties.
2. The MainAxisAlignment and CrossAxisAlignment classes offer a variety of

constants for controlling alignment.

Sizing widgets
1. When a layout is too large to fit a device, a yellow and black striped

pattern appears along the affected edge. Here is an example of a row that
is too wide:

Sizing Widgets
1. Widgets can be sized to fit within a row or column by using the Expanded

widget.
2. To fix the previous example where the row of images is too wide for its

render box, wrap each image with an Expanded widget.

Sizing Widgets
1. Perhaps you want a widget to occupy twice as much space as its siblings.
2. For this, use the Expanded widget flex property, an integer that

determines the flex factor for a widget.
3. The default flex factor is 1. In middle image, we will set flex factor to 2 for

middle image.

Packing widgets
1. By default, a row or column occupies as much space along its main axis as

possible, but if you want to pack the children closely together, set its
mainAxisSize to MainAxisSize.min.

Common Layout widgets
1. Standard widgets: These widgets are from the widgets library. It includes

Container, GridView, ListView and Stack.
2. Material widgets: These widgets are from the Material library. It includes

Card and ListTile.

Container
1. Add padding, margins, borders.
2. Change background color or image.
3. Contains a single child widget, but that child can be a Row, Column, or

even the root of a widget tree.

GridView
1. Lays widgets out in a grid.
2. Detects when the column content exceeds the render box and

automatically provides scrolling.
3. Build your own custom grid, or use one of the provided grids:

a. GridView.count allows you to specify the number of columns.
b. GridView.extent allows you to specify the maximum pixel width of a

tile.

Note: When displaying a two-dimensional list where it’s important which row
and column a cell occupies (for example, it’s the entry in the “calorie” column
for the “avocado” row), use Table or DataTable.

GridView.extent
Uses GridView.extent to
create a grid with tiles a
maximum 150 pixels
wide.

GridView.count
Uses GridView.count to
create a grid that’s 2 tiles
wide in portrait mode, and 3
tiles wide in landscape mode.

ListView
1. A specialized Column for

organizing a list of boxes.
2. Can be laid out horizontally or

vertically.
3. Detects when its content won’t fit

and provides scrolling.
4. Less configurable than Column,

but easier to use and supports
scrolling.

Stack
1. Use for widgets that overlap another widget.
2. The first widget in the list of children is the base widget; subsequent

children are overlaid on top of that base widget.
3. A Stack’s content can’t scroll.
4. You can choose to clip children that exceed the render box.

Example of Stack
Uses Stack to overlay a Container
(that displays its Text on a
translucent black background)
on top of a CircleAvatar. The
Stack offsets the text using the
alignment property and
Alignments.

Card
1. Implements a Material card. (https://material.io/components/cards)
2. Used for presenting related nuggets of information.
3. Accepts a single child, but that child can be a Row, Column, or other

widget that holds a list of children.
4. A Card’s content can’t scroll.
5. By default, a Card shrinks its size to 0 by 0 pixels. You can use SizedBox to

constrain the size of a card.
6. Displayed with rounded corners and a drop shadow.
7. Changing a Card’s elevation property allows you to control the drop

shadow effect. (https://material.io/design/environment/elevation.html)

https://material.io/components/cards
https://material.io/design/environment/elevation.html

Example of Card
A Card containing 3 ListTiles and sized by wrapping it with a SizedBox. A
Divider separates the first and second ListTiles.

ListTile
1. A specialized row that contains up to 3 lines of text and optional icons.
2. Less configurable than Row, but easier to use.
3. ListTile is most commonly used in Card or ListView, but can be used

elsewhere.

Creating responsive and adaptive apps
1. One of Flutter’s primary goals is to create a framework that allows you to

develop apps from a single codebase that look and feel great on any
platform.

2. This means that your app may appear on screens of many different sizes,
from a watch, to a foldable phone with two screens, to a high def monitor.

3. Two terms that describe concepts for this scenario are adaptive and
responsive. Ideally, you’d want your app to be both but what, exactly,
does this mean? These terms are similar, but they are not the same.

The difference between an adaptive and a responsive
1. Adaptive and responsive can be viewed as separate dimensions of an app:

you can have an adaptive app that is not responsive, or vice versa. And, of
course, an app can be both, or neither.

2. Let us understand both of them one by one.

Responsive
1. A responsive app has had its layout tuned for the available screen size.
2. Often this means (for example), re-laying out the UI if the user resizes the

window, or changes the device’s orientation.
3. This is especially necessary when the same app can run on a variety of

devices, from a watch, phone, tablet, to a laptop or desktop computer.

Adaptive
1. Adapting an app to run on different device types, such as mobile and

desktop, requires dealing with mouse and keyboard input, as well as
touch input.

2. It also means there are different expectations about the app’s visual
density, how component selection works, using platform-specific features
(such as top-level windows), and more.

Creating a responsive Flutter app
1. Flutter allows you to create apps that self-adapt to the device’s screen size

and orientation.
2. There are two basic approaches to creating Flutter apps with responsive

design:
a. Use the LayoutBuilder class.
b. Use the MediaQuery.of() method in your build functions.

Use the LayoutBuilder class
1. From its builder property, you get a BoxConstraints object.
2. Examine the constraint’s properties to decide what to display.

Use the MediaQuery.of() method in your build functions
1. This gives you the size, orientation, etc, of your current app.
2. This is more useful if you want to make decisions based on the complete

context rather than on just the size of your particular widget.
3. Again, if you use this, then your build function automatically runs if the

user somehow changes the app’s size.

Other useful widgets and classes for responsive UI
AspectRatio, CustomSingleChildLayout, CustomMultiChildLayout, FittedBox,
FractionallySizedBox, LayoutBuilder, MediaQuery, MediaQueryData and
OrientationBuilder.

Building adaptive apps
1. Flutter provides new opportunities to build apps that can run on mobile,

desktop, and the web from a single codebase. However, with these
opportunities, come new challenges.

2. You want your app to feel familiar to users, adapting to each platform by
maximizing usability and ensuring a comfortable and seamless
experience. That is, you need to build apps that are not just
multiplatform, but are fully platform adaptive.

3. There are many considerations for developing platform-adaptive apps,
but they fall into three major categories: Layout, Input, Idioms and Norms.

Building adaptive layouts
One of the first things you must consider when bringing your app to multiple
platforms is how to adapt it to the various sizes and shapes of the screens
that it will run on.

1. Layout widgets.
2. Visual density.
3. Contextual widgets.
4. Single source of truth while styling.
5. Design to the strengths of each form factor.
6. Use desktop build targets for rapid testing.
7. Solve touch first.

Layout widgets
1. If you’ve been building apps or websites, you’re probably familiar with

creating responsive interfaces. Luckily for Flutter developers, there are a
large set of widgets to make this easier.

2. Some of Flutter’s most useful layout widgets include:
a. Single child: LayoutBuilder, Expanded, Align, ConstrainedBox etc.
b. Multi child: Column, Row, Stack, ListView, GridView, Table etc.

3. https://flutter.dev/docs/development/ui/widgets/layout

https://flutter.dev/docs/development/ui/widgets/layout

Visual density
1. Different input devices offer various levels of precision, which necessitate

differently sized hit areas.
2. Flutter’s VisualDensity class makes it easy to adjust the density of your

views across the entire application, for example, by making a button
larger (and therefore easier to tap) on a touch device.

3. To set a custom visual density, inject the density into your MaterialApp
theme.

Contextual layout
If you need more than density changes and can’t find a widget that does what
you need, you can take a more procedural approach to adjust parameters,
calculate sizes, swap widgets, or completely restructure your UI to suit a
particular form factor.

Contextual layout: Screen-based breakpoints
1. The simplest form of procedural layouts uses screen-based breakpoints.
2. In Flutter, this can be done with the MediaQuery API.
3. There are no hard and fast rules for the sizes to use here, but these are

general values:

Contextual layout: Screen-based breakpoints
4. Using breakpoints, you can set up a simple system to determine the device
type:

5. Screen-based breakpoints are best used for making top-level decisions in
your app. Changing things like visual density, paddings, or font-sizes are best
when defined on a global basis.

Contextual layout: Use LayoutBuilder for extra flexibility
1. Even though checking total screen size is great for full-screen pages or

making global layout decisions, it’s often not ideal for nested subviews.
Often, subviews have their own internal breakpoints and care only about
the space that they have available to render.

2. The simplest way to handle this in Flutter is using the LayoutBuilder class.
LayoutBuilder allows a widget to respond to incoming local size
constraints, which can make the widget more versatile than if it depended
on a global value.

Contextual layout: Device segmentation
1. There are times when you want to make layout decisions based on the

actual platform you’re running on, regardless of size. For example, when
building a custom title bar, you might need to check the operating system
type and tweak the layout of your title bar, so it doesn’t get covered by the
native window buttons.

2. To determine which combination of platforms you’re on, you can use the
Platform API along with the kIsWeb value:

Single source of truth for styling
1. You’ll probably find it easier to maintain your views if you create a single

source of truth for styling values like padding, spacing, corner shape, font
sizes, and so on.

2. This can be done easily with some helper classes:
3. These constants can then be used in place of hard-coded numeric values:

Single source of truth for styling
4. With all views referencing the same shared-design system rules, they tend
to look better and more consistent. Making a change or adjusting a value for a
specific platform can be done in a single place, instead of using an error-prone
search and replace.

5. Using shared rules has the added benefit of helping enforce consistency on
the design side.

6. Some common design system categories that can be represented this way
are: Animation timings, Sizes and breakpoints, Insets and paddings, Corner
radius, Shadows, Strokes, Font families, sizes, and styles.

Design to the strengths of each form factor
1. Beyond screen size, you should also spend time considering the unique

strengths and weaknesses of different form factors.
2. It isn’t always ideal for your multi platform app to offer identical functionality

everywhere. Consider whether it makes sense to focus on specific capabilities,
or even remove certain features, on some device categories.

3. For example, mobile devices are portable and have cameras, but they aren’t
well suited for detailed creative work. With this in mind, you might focus more
on capturing content and tagging it with location data for a mobile UI, but focus
on organizing or manipulating that content for a tablet or desktop UI.

4. The key takeaway here is to think about what each platform does best and see if
there are unique capabilities you can leverage.

Use desktop build targets for rapid testing
1. One of the most effective ways to test adaptive interfaces is to take

advantage of the desktop build targets.
2. When running on a desktop, you can easily resize the window while the

app is running to preview various screen sizes. This, combined with hot
reload, can greatly accelerate the development of a responsive UI.

Solve touch first
1. Building a great touch UI can often be more difficult than a traditional

desktop UI due, in part, to the lack of input accelerators like right-click,
scroll wheel, or keyboard shortcuts.

2. One way to approach this challenge is to focus initially on a great
touch-oriented UI. You can still do most of your testing using the desktop
target for its iteration speed. But, remember to switch frequently to a
mobile device to verify that everything feels right.

3. After you have the touch interface polished, you can tweak the visual
density for mouse users, and then layer on all the additional inputs.

Input
1. Of course, it isn’t enough to just adapt how your app looks, you also have

to support varying user inputs.
2. The mouse and keyboard introduce input types beyond those found on a

touch device—like scroll wheel, right-click, hover interactions, tab
traversal, and keyboard shortcuts.

Input: Scroll wheel
1. Scrolling widgets like ScrollView or ListView support the scroll wheel by

default, and because almost every scrollable custom widget is built using
one of these, it works with them as well.

2. If you need to implement custom scroll behavior, you can use the Listener
widget, which lets you customize how your UI reacts to the scroll wheel.

Input: Tab traversal and focus interactions
1. Users with physical keyboards expect that they can use the tab key to quickly

navigate your application.
2. There are two considerations for tab interactions: how focus moves from widget

to widget, known as traversal, and the visual highlight shown when a widget is
focused.

3. Most built-in components, like buttons and text fields, support traversal and
highlights by default. If you have your own widget that you want included in
traversal, you can use the FocusableActionDetector widget to create your own
controls.

4. To get more control over the order that widgets are focused on when the user
presses tab, you can use FocusTraversalGroup to define sections of the tree
that should be treated as a group when tabbing.

Input: Keyboard accelerators
1. In addition to tab traversal, desktop and web users are accustomed to

having various keyboard shortcuts bound to specific actions.
2. Whether it’s the Delete key for quick deletions or Control+N for a new

document, be sure to consider the different accelerators your users
expect.

3. If you have a single widget like a TextField or a Button that already has a
focus node, you can wrap it in a RawKeyboardListener and listen for
keyboard events.

4. If you’d like to apply a set of keyboard shortcuts to a large section of the
tree, you can use the Shortcuts widget.

Input: Mouse enter, exit, and hover
1. On desktop, it’s common to change the mouse cursor to indicate the

functionality about the content the mouse is hovering over.
2. For example, you usually see a hand cursor when you hover over a

button, or an I cursor when you hover over text.
3. The Material Component set has built-in support for your standard button

and text cursors. To change the cursor from within your own widgets, use
MouseRegion.

4. MouseRegion is also useful for creating custom rollover and hover effects.

Idioms and norms
1. The final area to consider for adaptive apps is platform standards. Each

platform has its own idioms and norms; these nominal or de facto
standards inform user expectations of how an application should behave.

2. Thanks, in part to the web, users are accustomed to more customized
experiences, but reflecting these platform standards can still provide
significant benefits:
a. Reduce cognitive load.
b. Build trust.

Common idioms and norms to consider
1. Scrollbar appearance and behavior.
2. Multi-select.
3. Selectable text.
4. Context menus and tooltips.
5. Horizontal button order.

Scrollbar appearance and behavior
1. Desktop and mobile users expect scrollbars, but they expect them to

behave differently on different platforms. Mobile users expect smaller
scrollbars that only appear while scrolling, whereas desktop users
generally expect omnipresent, larger scrollbars that they can click or drag.

2. Flutter comes with a built-in Scrollbar widget that already has support for
adaptive colors and sizes according to the current platform. The one
tweak you might want to make is to toggle alwaysShown when on a
desktop platform.

Multi-select
1. To perform a platform-aware check for control or command, you can

write something like this:

2. A final consideration for keyboard users is the Select All action

Selectable text
1. A common expectation on the web (and to a lesser extent desktop) is that

most visible text can be selected with the mouse cursor.
2. This is easy to support with the SelectableText widget.
3. To support rich text, then use TextSpan.

Context menus and tooltips
1. On desktop, there are several interactions that manifest as a widget

shown in an overlay, but with differences in how they’re triggered,
dismissed, and positioned:
a. Context menu: Typically triggered by a right-click, a context menu is

positioned close to the mouse, and is dismissed by clicking anywhere,
selecting an option from the menu, or clicking outside it.

b. Tooltip: Typically triggered by hovering for 200-400ms over an
interactive element, a tooltip is usually anchored to a widget (as
opposed to the mouse position) and is dismissed when the mouse
cursor leaves that widget.

Context menus and tooltips
c. Popup panel: Similar to a tooltip, a popup panel is usually anchored to a
widget. The main difference is that panels are most often shown on a tap event,
and they usually don’t hide themselves when the cursor leaves. Instead, panels
are typically dismissed by clicking outside the panel or by pressing a Close or
Submit button.

3. To show basic tooltips in Flutter, use the built-in Tooltip widget. Flutter also
provides built-in context menus when editing or selecting text.

4. To show more advanced tooltips, popup panels, or create custom context
menus, you either use third party packages, or build it yourself.

Horizontal button order
1. On Windows, when presenting a row of buttons, the confirmation button

is placed at the start of the row (left side). On all other platforms, it’s the
opposite. The confirmation button is placed at the end of the row (right
side).

2. This can be easily handled in Flutter using the TextDirection property on
Row.

Navigation to a new screen and back
1. Most apps contain several screens for displaying different types of

information.
2. In Flutter, screens and pages are called routes. The remainder of this

recipe refers to routes.
3. In Android, a route is equivalent to an Activity. In iOS, a route is equivalent

to a ViewController. In Flutter, a route is just a widget.
4. To switch to a new route, use the Navigator.push() method. The push()

method adds a Route to the stack of routes managed by the Navigator.
5. By using the Navigator.pop() method we can return to first route.

Navigate with named route
1. In the Navigate to a new screen and back, you learned how to navigate to

a new screen by creating a new route and pushing it to the Navigator.
2. However, if you need to navigate to the same screen in many parts of

your app, this approach can result in code duplication. The solution is to
define a named route, and use the named route for navigation.

3. To work with named routes, use the Navigator.pushNamed() function.
4. In some cases, you might also need to pass arguments to a named route.
5. You can accomplish this task using the arguments parameter of the

Navigator.pushNamed() method. Extract the arguments using the
ModalRoute.of() method or inside an onGenerateRoute() function.

Return data from a screen
1. In some cases, you might want to return data from a new screen.
2. You can do this with the Navigator.pop() method.

Deep linking
1. Flutter supports deep linking on iOS, Android, and web browsers.
2. Opening a URL displays that screen in your app.
3. If you’re running the app in a web browser, there’s no additional setup

required. We need to enable them in Android and iOS.
4. For Android: Add a metadata tag and intent filter to AndroidManifest.xml

inside the <activity> tag with the ".MainActivity" name:

Homework
1. https://flutter.dev/docs/cookbook/navigation/hero-animations

2. https://flutter.dev/docs/development/ui/assets-and-images

3. https://flutter.dev/docs/cookbook/images/network-image

4. https://flutter.dev/docs/cookbook/images/fading-in-images

5. https://flutter.dev/docs/cookbook/images/cached-images

6. https://flutter.dev/docs/cookbook/lists/long-lists

7. https://flutter.dev/docs/cookbook/lists/floating-app-bar

8. https://flutter.dev/docs/cookbook/forms

https://flutter.dev/docs/cookbook/navigation/hero-animations
https://flutter.dev/docs/development/ui/assets-and-images
https://flutter.dev/docs/cookbook/images/network-image
https://flutter.dev/docs/cookbook/images/fading-in-images
https://flutter.dev/docs/cookbook/images/cached-images
https://flutter.dev/docs/cookbook/lists/long-lists
https://flutter.dev/docs/cookbook/lists/floating-app-bar
https://flutter.dev/docs/cookbook/forms

Thank You!

