
DYNAMIC PROGRAMMING
MNNIT Computer Coding Club

Is Dynamic Programming an Algorithm

No

It is an Algorithm Paradigm i.e., a general idea on which various algorithms are based.

Layman understanding of DP

Consider you have 1000 sticks with you. If I add one more to the collection, how many
do I have now. Most of you would have instantly said 1001.

Why is that so? Because of a single reasoning, there were already 1000 sticks so adding 1
more would mean (1000 + 1) sticks = 1001 sticks.

Another approach would have been after adding one more stick, we start counting from
the beginning 1, 2 ,3 ... all the way up to 1001.

Which of the two methods was better and Why?

It is pretty obvious that the first method was way better.

Why is it so? Well the answer to this question forms the foundation of the idea on which
Dynamic Programming is based.

The first method is better simply because we don’t re-count i.e., we make use of the
existing information to find the solution of the current problem.

So what is Dynamic Programming

Dynamic Programming is an algorithm paradigm, which aims at storing and re-using the
information that is already calculated and not calculate the values every time it is
needed.

Technical Definition

A DP is an algorithmic technique which is usually based on a recurrent formula and one
(or some) starting states. A sub-solution of the problem is constructed from previously
found ones. DP solutions have a polynomial complexity which assures a much faster
running time than other techniques like backtracking, brute-force etc.

In other words if the problem has following properties then it can be solved using DP:

- Optimal Substructure
- Overlapping Subproblems

Terminologies

- Optimal Substructure : It means that the problem can be divided in to various sub
problems and the optimal solutions of those sub problems will give us the optimal
solution of the main problem.

- Overlapping Subproblem : It means that the subproblems which will be
generated might overlap, i.e., we might need to calculate the value for the same
multiple times.

- Memoization : A technique of caching (storing) previously calculated values to
ensure re-use and avoid unnecessary re calculations.

Divide and Conquer AND Dynamic Programming

Both Divide and Conquer and Dynamic Programming are really similar algorithm
paradigms. In other words Divide and Conquer is Dynamic Programming where the
subproblems don’t overlap.

How to solve problems using Dynamic
Programming

- Start by analysing the main problem and represent it as the final state using some
state variables.

- Then determine the transitions between the states, i.e., how does the
subproblems help in determining the solution of the actual problem.

- Identify the base conditions.
- This would give us a recursive function. Memoise the states so that we don’t have

to calculate their values again and again.

Complexity Analysis of DP problems

The complexity of a problem solved using DP is

O(number of states * Time complexity of deriving one state).

Understanding DP with a problem

Problem : Find the Nth fibonacci number.

Can this problem be solved using DP?

For a problem to be solvable using DP, it has to satisfy the properties mentioned before.

- Optimal Substructure : This problem can indeed be remodelled in a structure
such that the optimal solution of the subproblems will derive the optimal solution
of the main problem.

The structure of the problem would be f(n) where n is the state variable, and it
depends on its sub problems in the following way:

f(n) = f(n-1) + f(n-2)

So the first requirement is met.

- Overlapping Subproblems : The recursive tree of this function indicates that many
subproblems do overlap. Eg. Here F4 has been calculated 2 times.

So DP can indeed be used to solve this problem.

Solution

PROBLEMS

Problem 1

Given infinite number of coins of denominations a , b , c (a < b < c) what is the minimum
number of coins which you need to give if you want to pay a bill of N.

Also called the Coin Change Problem.

Initial Thoughts

The most intuitive thought that comes to our mind is to use the highest denomination
as many times as it can be used, then move to the next highest and so on.

Will it work for every case ?

The answer is No.

example : If a = 1 , b = 3 , c = 4 and N = 6 then the answer should be 2 (3 + 3), but the
greedy solution will give 3 (4 + 1 + 1).

General DP solution

Since a greedy solution won’t be helpful for many cases, we resort to DP.

Does this problem satisfies the requirements for using DP ie., does this problem uses
has optimal substructure and overlapping subproblems?

Or in simpler terms can this problem be expressed in states (which depend upon
previous states) and do the values of those states need to be re calculated multiple
times?

The answer is YES

What are the state variables?

There is only one state variable, i.e., the amount to be spent. Considering a,b,c as
constants, no other factor influences the number of coins to give. So, the only state
variable needed is amt i.e., the amount to be spent.

So we can express the problem as a function fun(amt) which takes in the current state
as the input (the amount to be spent) and returns the minimum number of coins to
spend.

What are the transitions?

fun(amt) = min(fun(amt - a) , fun(amt - b) , fun(amt - c)) + 1

That’s it. A single transition would be sufficient for our case. How did we derive this
transition? It’s simple.

We initially have to spend amt money. If we give a coin of denomination a then we are
left with (amt - a) money to spend and we have spent 1 coin. Same is the case with b , c.
So the optimal number of coins for spending amt money would be the minimum coins
we have to spend for (amt - a) or (amt - b) or (amt - c).

What is the Base case?

If n == 0 the obviously we can’t spend any money , so fun(0) = 0

If n < 0, this can be inferred as we being in a debt rather than having any money to
spend. So this is an invalid case and any transaction that leads to this case is invalid.

However for ease of coding and calculation we can say if we have n < 0 then we have to
spend an infinite number of coins. This is because if any transaction leads us to this case
we’ll return an insane amount of coins to be spent which will be eventually rejected by
our algorithm since any valid transaction is bound to have a finite (less than this case)
answer.

Code

Time complexity : O(amt)

Problem 2

SPOJ problem (Code : FARIDA)

https://www.spoj.com/problems/FARIDA/

What state variables to use?

Since the only thing important to represent a state is the number of monsters seen so
far, so we’ll take only one state.

fun(n) -> maximum number of coins that we can get considering we have only
considered first n monsters.

What would be the transitions?

- If we decide not to take coins from the nth monster, then fun(n) = fun(n+1)
- If we take coins from the current monster then we will only be able to consider

monsters from (n+2)th position, so in this case fun(n) = fun(n+2) + coins[n]

So the transition :

fun(n) = max(fun(n+1) , fun(n+2) + coins[n])

Code

Problem 3

SPOJ Problem (ACODE)

https://www.spoj.com/problems/ACODE/

What will be the state variables?

Again we need only one state variable i.e., the number of indices processed.

Transitions?

Since a character can correspond to at most 2 digits, so there will be at most two
branches originating from our recursive tree for every state.

fun(n) = fun(n-1) + fun(n-2) , but various conditions have to be checked.

Problems to practice

- https://atcoder.jp/contests/dp/tasks
- https://cses.fi/problemset/ (DP section)
- https://www.spoj.com/problems/tag/dynamic-programming

https://atcoder.jp/contests/dp/tasks
https://cses.fi/problemset/
https://www.spoj.com/problems/tag/dynamic-programming

