
DYNAMIC PROGRAMMING
MNNIT Computer Coding Club



Is Dynamic Programming an Algorithm

No

It is an Algorithm Paradigm i.e., a general idea on which various algorithms are based.



Layman understanding of DP

Consider you have 1000 sticks with you. If I add one more to the collection, how many 
do I have now. Most of you would have instantly said 1001. 

Why is that so? Because of a single reasoning, there were already 1000 sticks so adding 1 
more would mean (1000 + 1) sticks = 1001 sticks.

Another approach would have been after adding one more stick, we start counting from 
the beginning 1, 2 ,3 ... all the way up to 1001.



Which of the two methods was better and Why?

It is pretty obvious that the first method was way better.

Why is it so? Well the answer to this question forms the foundation of the idea on which 
Dynamic Programming is based.

The first method is better simply because we don’t re-count i.e., we make use of the 
existing information to find the solution of the current problem.



So what is Dynamic Programming

Dynamic Programming is an algorithm paradigm, which aims at storing and re-using the 
information that is already calculated and not calculate the values every time it is 
needed.





Technical Definition

A DP is an algorithmic technique which is usually based on a recurrent formula and one 
(or some) starting states. A sub-solution of the problem is constructed from previously 
found ones. DP solutions have a polynomial complexity which assures a much faster 
running time than other techniques like backtracking, brute-force etc.

In other words if the problem has following properties then it can be solved using DP:

- Optimal Substructure
- Overlapping Subproblems



Terminologies

- Optimal Substructure : It means that the problem can be divided in to various sub 
problems and the optimal solutions of those sub problems will give us the optimal 
solution of the main problem.

- Overlapping Subproblem : It means that the subproblems which will be 
generated might overlap, i.e., we might need to calculate the value for the same 
multiple times.

- Memoization : A technique of caching (storing) previously calculated values to 
ensure re-use and  avoid unnecessary re calculations.



Divide and Conquer AND Dynamic Programming

Both Divide and Conquer and Dynamic Programming are really similar algorithm 
paradigms. In other words Divide and Conquer is Dynamic Programming where the 
subproblems don’t overlap. 



How to solve problems using Dynamic 
Programming

- Start by analysing the main problem and represent it as the final state using some 
state variables.

- Then determine the transitions between the states, i.e., how does the 
subproblems help in determining the solution of the actual problem.

- Identify the base conditions.
- This would give us a recursive function. Memoise the states so that we don’t have 

to calculate  their values again and again.



Complexity Analysis of DP problems

The complexity of a problem solved using DP is

O(number of states * Time complexity of deriving one state).



Understanding DP with a problem

Problem : Find the Nth fibonacci number.



Can this problem be solved using DP?

For a problem to be solvable using DP, it has to satisfy the properties mentioned before.

- Optimal Substructure : This problem can indeed be remodelled in a structure 
such that the optimal solution of the subproblems will derive the optimal solution 
of the main problem. 

The structure of the problem would be f(n) where n is the state variable, and it 
depends on its sub problems in the following way:

f(n) = f(n-1) + f(n-2)

So the first requirement is met.



- Overlapping Subproblems : The recursive tree of this function indicates that many 
subproblems do overlap. Eg. Here F4 has been calculated 2 times.

So DP can indeed be used to solve this problem.



Solution



PROBLEMS



Problem 1

Given infinite number of coins of denominations a , b , c (a < b < c) what is the minimum 
number of coins which you need to give if you want to pay a bill of N.

Also called the Coin Change Problem.



Initial Thoughts

The most intuitive thought that comes to our mind is to use the highest denomination 
as many times as it can be used, then move to the next highest and so on.

Will it work for every case ?

The answer is No.

example : If a = 1 , b = 3 , c = 4 and N = 6 then the answer should be 2 (3 + 3), but the 
greedy solution will give 3 (4 + 1 + 1).



General DP solution

Since a greedy solution won’t be helpful for many cases, we resort to DP.

Does this problem satisfies the requirements for using DP ie., does this problem uses 
has optimal substructure and overlapping subproblems?

Or in simpler terms can this problem be expressed in states (which depend upon 
previous states) and do the values of those states need to be re calculated multiple 
times?



The answer is YES



What are the state variables?

There is only one state variable, i.e., the amount to be spent. Considering  a,b,c as 
constants, no other factor influences the number of coins to give. So, the only state 
variable needed is amt i.e., the amount to be spent.

So we can express the problem as a function fun(amt) which takes in the current state 
as the input (the amount to be spent) and returns the minimum number of coins to 
spend.



What are the transitions?

fun(amt) = min(fun(amt - a) , fun(amt - b) , fun(amt - c)) + 1

That’s it. A single transition would be sufficient for our case. How did we derive this 
transition? It’s simple.

We initially have to spend amt money. If we give a coin of denomination a then we are 
left with (amt - a) money to spend and we have spent 1 coin. Same is the case with b , c. 
So the optimal number of coins for spending amt money would be the minimum coins 
we have to spend for (amt - a) or (amt - b) or (amt - c). 



What is the Base case?

If n == 0 the obviously we can’t spend any money , so fun(0) = 0

If n < 0, this can be inferred as we being in a debt rather than having any money to 
spend. So this is an invalid case and any transaction that leads to this case is invalid.

However for ease of coding and calculation we can say if we have n < 0 then we have  to 
spend an infinite number of coins. This is because if any transaction leads us to this case 
we’ll return an insane amount of coins to be spent which will be eventually rejected by 
our algorithm since any valid transaction is bound to have a finite (less than this case) 
answer.



Code

Time complexity : O(amt)



Problem 2

SPOJ problem (Code : FARIDA)

https://www.spoj.com/problems/FARIDA/


What state variables to use?

Since the only thing important to represent a state is the number of monsters seen so 
far, so we’ll take only one state.

fun(n) -> maximum number of coins that we can get considering we have only 
considered first n monsters.



What would be the transitions?

- If we decide not to take coins from the nth monster, then fun(n) = fun(n+1)
- If we take coins from the current monster then we will only be able to consider 

monsters from (n+2)th position, so in this case fun(n) = fun(n+2) + coins[n]

So the transition : 

fun(n) = max(fun(n+1) , fun(n+2) + coins[n])







Code



Problem 3

SPOJ Problem (ACODE)

https://www.spoj.com/problems/ACODE/


What will be the state variables?

Again we need only one state variable i.e., the number of indices processed.



Transitions?

Since a character can correspond to at most 2 digits, so there will be at most two 
branches originating from our recursive tree for every state.

fun(n) = fun(n-1) + fun(n-2) , but various conditions have to be checked.



Problems to practice

- https://atcoder.jp/contests/dp/tasks
- https://cses.fi/problemset/ (DP section)
- https://www.spoj.com/problems/tag/dynamic-programming

https://atcoder.jp/contests/dp/tasks
https://cses.fi/problemset/
https://www.spoj.com/problems/tag/dynamic-programming

