
GRAPHS
AND TREES

BY MNNIT
COMPUTER

CODING CLUB

INTRODUCTION TO
GRAPHS

WHAT ARE GRAPHS

Graphs are non-linear data structures that are used to represent the
relationships between various entities.

REAL-LIFE
EXAMPLES OF
GRAPHS.

A country has various cities connected by roads.
This type of information can be represented by
graphs.

GEOGRAPHY OF A COUNTRY

The information like how computers are connected
in a network, and how should the data be
transferred between two computers can be
represented by graphs.

NETWORK TOPOLOGY

While conducting exams the college authorities try
to finish them in the least amount of time while
ensuring that two exams that occur at the same
time should not be written by the same student.
Such problems can be solved using graphs.

EXAM SCHEDULING

NEED TO LEARN GRAPHS.

There are various problems in real life that require non-linear
visualization of data. However, every data structure which we studied
till now visualizes data linearly (eg., arrays, linked lists, stacks, queues,
vectors, etc.). So the concept of graphs and trees will help us build
the foundation for creating non-linear data structures that'll help
solve much more complex problems.

FORMAL DEFINITION
A graph G can be defined as a pair (V,E), where V is a set of vertices,
and E is a set of edges between the vertices E ⊆ {(u,v) | u, v ∈ V}. If
the graph is undirected, the adjacency relation defined by the edges
is symmetric, or E ⊆ {{u,v} | u, v ∈ V} (sets of vertices rather than
ordered pairs). If the graph does not allow self-loops, adjacency is
irreflexive.

https://xlinux.nist.gov/dads/HTML/symmetric.html
https://xlinux.nist.gov/dads/HTML/selfloop.html
https://xlinux.nist.gov/dads/HTML/irreflexive.html

IN SIMPLER TERMS
A graph is a collection of nodes (also called vertices) that are
connected by edges.

TYPES OF GRAPHS

CONNECTED/UNCONNECTED GRAPH

CYCLIC/ACYCLIC GRAPH

DIRECTED/UNDIRECTED GRAPH

WEIGHTED/UNWEIGHTED GRAPH

BIPARTITE GRAPH

SIMPLE GRAPH

DENSE/SPARSE GRAPH

What are TREES?

There are N-1 edges on a tree if the number of nodes = N.
A tree is acyclic
It is connected.

Trees are nothing but acyclic connected graphs. Some of the
properties of trees include:

GRAPH/TREE
REPRESENTATION

So far we have only discussed graphs theoretically. But when we'll
write programs using them, then we need some way to represent them
in the memory. For example, an array can be represented as a
pointer pointing to the first element, a linked list can be represented
as a pointer to the first node which in turn points to the next node,
and so on. However representing non-linear data structures isn't as
intuitive and straightforward as linear DS, so there are various ways to
represent graphs.

Graph
Representations

The most trivial way to
represent graphs is using an
array/vector of edges (pair
of nodes which it connects).
This type of representation is
mostly used to give input in
CP sites

VECTOR OF EDGES

A very important way to
represent graphs. It basically
is a N*N matrix representing
a graph containg N nodes,
where matrix[i][j] = 0 if there
is no edge between i , j
otherwise it is 1 or sth else
depending on whether the
grpah is weighted or not.

ADJACENCY MATRIX

Another important way to
represent graphs. In this
representation, every node
has a list associated with it of
the nodes which are
connected to it. If the graph
is weighted, the list is of pairs
.

ADJACENCY LIST

This is matrix of size N*E
representing a graph of N
nodes and E edges, where
matrix[i][j] = 1 implies that jth
edge is incident on the ith
node.

INCIDENCE MATRIX

GRAPH TRAVERSALS.

How to traverse the graph we
created?

It is a form of graph traversal in
which we start from a node and
keep exploring the depth of the
graph as far below as we can
go. Recursion uses this DFS.

DEPTH FIRST SEARCH (DFS)

It is a form of graph traversal in
which we first explore all the
immediate neighbours of a

particular node and then move
on to explore the other nodes.

BREADTH-FIRST DEARCH

DEPTH FIRST SEARCH

Depth-first search (DFS) is an algorithm for traversing or searching
tree or graph data structures. The algorithm starts at the root node
(selecting some arbitrary node as the root node in the case of a
graph) and explores as far as possible along each branch before
backtracking.

Stacks are used for DFS.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology

Important
terms for DFS

These are self explanatory. They'll be very useful
when studying about trees.

ENTRY/EXIT TIMES

The edges traversed during the DFS traversal.

TREE EDGES

The remaining edges. Tree and back edges will be
very useful when learning about bridges and
articulation points.

BACK EDGES

Breadth First Search

The algorithm can be visualized as a fire originating from some node
and spreading throughout the graph using the edges.

Queues are used for the same.

WHEN TO USE WHAT?

Both the traversal mechanisms have their own advantages and
disadvantages. The following set of problems will get you acquainted
with what to use where.

Problem 1

Given an undirected graph determine
the minimum distance each node has
from the source node.

Problem 2

Given an undirected graph where each node has a
letter associated with it. Determine the
lexicographically minimum path of the graph from
the root to each of the vertices.

Problem 3

Given a graph find if it contains any cycles.

Problem 4

Given a tree determine the minimum distance between the given root
and any leaf.

Problem 5

Given an undirected graph, figure out if it's bi partite.

Problem 6 (0/1 BFS)

Given a graph such that each edge has either weight of 0 or 1. Find
out the minimum distance each node has from the root, where
distance refers to the sum of weights of the edges in the path from the
root to the node.

Practice Problems

SPOJ ABCPATH

SPOJ KOZE

https://www.spoj.com/problems/ABCPATH/
https://www.spoj.com/problems/KOZE/

