Linear Search
&

Binary Search

start here ... g0 through these, to the end stop

g BRel el el 7] sfufsefsofsles

0 1 2 3 4 5 6 7 8 %1011

toFind @

Every item is checked but no match is found till the
end of the data collection

* Find 377
0

1 2 3 4 5 6 7 8
2|s|w|w|e|n]s]s]e

 d s 3
Return 2

Found a match at index 2

* procedure linear_search (list, value)

for each item in the list
if match item == value
return the item's location

end if
end for

end procedure

Adv. & Disadv. Of LS

Advantages
- Easiest to understand and implement
- No sorting required
- Suitable for small list sizes
- Works fine for small number of elements

Disadvantages
- Time inefficient as compared to other algorithms
- Not suitable for large-sized lists
- Search time increases with number of elements

Binary Search (BS)

Binary Search is a Divide and Conquer algorithm

Binary search algorithm finds the position of a target value
within a sorted array

A more efficient approach than Linear Search because
Binary Search basically reduces the search space to half at
each step

Graphical Illustration of BS

Lower Middle Higherx
I_i S |10 |15 |20 | 25 | 30| 35 | 40 | 45 | 50| 58| 65 | 80 9%1
Lower Middle Higher

I—-i S |10 |15 |20 | 25 | 30| 35 | 40 | 45 | 50| 58| 65| 80|98

Lower Middle Higher

S

4,5 |10 |15 |20 | 25 | 30| 35| 40 | A5 | 50| 58| 65| 8O |98

Middle
r Higher

N

4| 5 (10 |15 |20 | 25 | 30| 35 | 40 | 45 | 50| 58| 65 | 8O |98

* Find 377
1. Sort Array.

0 1 2

3 Rl S 6 7 8
o[[]s[ss[or

Graphical Illustration of BS

2. Calculate middie = (low + high) / 2.
=(0+8)/2=4.

0 1 2 3 < 5 6 7 8
SEIEIQCCL00
T T T

first middle last

If 37 == array[middie] =» return middle
Else if 37 < array[middie] =» high = middie -1
Else if 37 > array[middie] =» low = middie +1

Repeat 2. Calculate middie = (low + high) / 2.

=(0+3)/2=1.
0 1 2 3 4 S5 6 7 8
20{35)37 {40
) S 1
first middie last

If 37 == array[middie] = return middie
Else if 37 < array[middie] =» high = middle -1
Else if 37 > array[middie] < low = middle +1

Repeat 2. Calculate middie = (low + high) / 2.

=(2+3)/2=2.
0 1 2 3 1 5 6 7 8
¥ T
midadie first

If 37 == array[middie] < return middie
Else if 37 < array[middie] <» high = middie -1
Else if 37 > array[middie] < low = middie +1

Binary Search

With each test that fails to and a match, the search is
continued with one or other of the two sub-intervals,
each at most half the size

If the original number of items is N then after the
first iteration there will be at most N/2 items
remaining, then at most N/4 items, and so on

In the worst case, when the value is not in the list, the
algorithm must continue iterating until the list is empty

Pseudocode

Procedure binary_search
A < sorted array
n < size of array
X < value to be searched

Set lowerBound = 1
Set upperBound = n

while x not found

if upperBound < lowerBound
EXIT: x does not
exists.

—»set midPoint =
lowerBound + (upperBound -lowerBound)/2

if A[midPoint] < x
set lowerBound = midPoint + 1

if A[midPoint]> x
set upperBound = midPoint - 1

if AlmidPoint] = x
EXIT: x found at location midPoint
end while

end procedure

lterative binary search

F
int begin = 0;
int last = array.Length - 1;
int mid = 0;
.
‘s while (begin <= last) |
mid = {(begin + last) / 2;
i1f {array[mid] < =) {
begin = mid + 1;

t

glse if {array[mid] > x) |
last = mid - 1;

}

else |
return mid;

;

return -1;

s

Part #1 Initialize pointers

A

Part #2 Search

