
Lesson: Git
Advanced Features

 March 8, 2018

- MNNIT COMPUTER CLUB

Git Branching

● When you make a commit, Git stores a commit object that
contains a pointer to the snapshot of the content you staged.
This object also contains the author’s name and email, the
message that you typed, and pointers to the commit or commits
that directly came before this commit (its parent or parents):
zero parents for the initial commit, one parent for a normal
commit, and multiple parents for a commit that results from a
merge of two or more branches

● A branch in Git is simply a lightweight movable pointer to one of
these commits. Every time you commit, it moves forward
automatically.

● The default branch name in Git is master

Git Branching

Creating a Branch
● git branch <branch_name>
❖ How does Git know what branch

you’re currently on? It keeps a
special pointer called HEAD.

❖ Example: git branch testing

Switching a Branch
● git checkout <branch_name>
❖ Example: git checkout testing
❖ git log --oneline --decorate - to

see where the branch pointers are
pointing

❖ git checkout -b <branch_name> -
to create and switch

Note that if your working directory or staging area
has uncommitted

changes that conflict with the branch you’re
checking out, Git won’t let you switch branches

(Stashing and Cleaning helps!!).

Git Merge
● git merge <new_branch_name> : merges the

new_branch_name with the current working
branch.

❖ When you try to merge one commit with a
commit that can be reached by following the
first commit’s history, Git simplifies things
by moving the pointer forward because
there is no divergent work to merge
together — this is called a “fast-forward.”
➢ git branch -d <branch_name> : deletes branch

<branch_name>

➢ git branch : lists the branches

Basic Merge Conflicts
● If you change the same part of the same file differently in

the two branches you’re merging together, Git won’t be
able to merge them cleanly.

● Anything that has merge conflicts and hasn’t been
resolved is listed as unmerged.

● After you’ve resolved each of these sections in each
conflicted file, run git add on each file to mark it as
resolved. Staging the file marks it as resolved in Git.
○ Read git mergetool yourself

○ git branch --merged: shows branches merged into the current

branch

○ git branch --no-merged: shows branches not merged into the

current branch(They can only be deleted forcefully(-D))

Remote Repositories

● Remote repositories are versions of your project that are hosted on the
Internet or network somewhere.

● Remote repositories can be on local machine.
● In layman terms, remote is a kind of remote controller for any repository

hosted anywhere else.
● git remote command is used for listing the remote servers. For cloned

repositories, its origin.

Git Fetch

● The command goes out to that remote project and pulls
down all the data from the remote project that you don’t
have yet.

● After running this command, you have references to all
the branches of that remote repo.

❖ git fetch <remote>

Git Pull

● The command goes out to that remote project and pulls
down all the data from the remote project that you don’t
have yet and merges the remote branch into your current
branch in case there are no merge conflicts.

❖ git pull <remote> <branch>

Git Push

● This command is used for adding your commits/changes
to the remote repository.

● For this command to work, the working tree should
remain updated with the most recent changes of the
remote repo.

❖ git push <remote> <branch>
❖ Read yourself: git stash

Summary

