
For Example: If you put the below code in a single file:
public class Employee
{
public static void main()
{
}
}
class Manager
{
}
Then you need to name the file as Employee.java only
// This class defines an integer stack that can hold 10 values.
class Stack { // last in first out
/*
* Now, both stck and tos are private. This means that they cannot be
* accidentally or maliciously altered in a way that would be harmful to the
* stack.
*/
private int stck[] = new int[10];
private int tos;
// Initialize top-of-stack
public Stack() {
tos = -1;
}
// Push an item onto the stack
public void push(int item) {
if (tos == 9)
System.out.println("Stack is full.");
else
stck[++tos] = item;
}
// Pop an item from the stack
public int pop() {
if (tos < 0) {
System.out.println("Stack underflow.");
return 0;
} else
return stck[tos--];
}
}
class TestStack {
public static void main(String args[]) {
Stack mystack1 = new Stack();
Stack mystack2 = new Stack();
// push some numbers onto the stack
for (int i = 0; i < 10; i++)
mystack1.push(i);
for (int i = 10; i < 20; i++)
mystack2.push(i);
// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for (int i = 0; i < 10; i++)
System.out.println(mystack1.pop());
System.out.println("Stack in mystack2:");
for (int i = 0; i < 10; i++)
System.out.println(mystack2.pop());
// these statements are not legal
// mystack1.tos = -2;
// mystack2.stck[3] = 100;
}
}
/*
Output:
Stack in mystack1:
9
8
7
6
5
4
3
2
1
0
Stack in mystack2:
19
18
17
16
15
14
13
12
11
10
*/
main( ). main( ) is declared as static because it must be called before any objects exist.class StaticDemo {
static int a = 42;
int c;
static int b = 99;
static void callme() {
System.out.println("a = " + a);
}
}
class StaticByName {
public static void main(String args[]) {
StaticDemo.callme();
StaticDemo a = new StaticDemo();
a.a = 50;
a.c = 10;
StaticDemo b = new StaticDemo();
b.c = 20;
a.callme();
System.out.println("c from a = " + a.c);
System.out.println("c from b = " + b.c);
System.out.println("b = " + StaticDemo.b);
System.out.println("a = " + b.a);
}
}
/*
Output:
a = 42
a = 50
c from a = 10
c from b = 20
b = 99
a = 50
*/
final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;
// This program uses inheritance to extend Box.
class Box {
double width;
double height;
double depth;
// construct clone of an object
Box(Box ob) { // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;
}
// constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;
}
// constructor used when no dimensions specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}
// constructor used when cube is created
Box(double len) {
width = height = depth = len;
}
// compute and return volume
double volume() {
return width * height * depth;
}
}
// Here, Box is extened to include weight.
class BoxWeight extends Box {
double weight; // weight of box
// constructor for BoxWeight
BoxWeight(double w, double h, double d, double m) {
width = w;
height = h;
depth = d;
weight = m;
}
double getDensity() {
return weight / volume();
}
}
class RefDemo {
public static void main(String args[]) {
BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
double vol;
vol = weightbox.volume();
System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " + weightbox.weight);
System.out.println("Density of weightbox is " + weightbox.getDensity());
System.out.println();
Box plainbox = new BoxWeight(3, 5, 7, 8.37);
vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);
/*
* The following statement is invalid because plainbox does not define a weight
* member.
*/
// System.out.println("Weight of plainbox is " + plainbox.weight);
}
}
/*
Output:
Volume of weightbox is 105.0
Weight of weightbox is 8.37
Density of weightbox is 0.07971428571428571
Volume of plainbox is 105.0
*/
// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
double weight; // weight of box
// initialize width, height, and depth using super()
BoxWeight(double w, double h, double d, double m) {
super(w, h, d); // call superclass constructor
weight = m;
}
}
#### 6.java
// Using super to overcome name hiding.
class A {
int i;
}
// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A
B(int a, int b) {
super.i = a; // i in A
i = b; // i in B
}
void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);
}
}
class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2);
subOb.show();
}
}
// Demonstrate when constructors are called.
// Create a super class.
class A {
A() {
System.out.println("Inside A's constructor.");
}
}
// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Inside B's constructor.");
}
}
// Create another subclass by extending B.
class C extends B {
C() {
System.out.println("Inside C's constructor.");
}
}
class CallingCons {
public static void main(String args[]) {
C c = new C();
}
}
// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);
}
}
class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
// display k -- this overrides show() in A
void show() {
System.out.println("k: " + k);
}
}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B
}
}
// Methods with differing type signatures are overloaded -- not overridden.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);
}
}
// Create a subclass by extending class A.
class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}
// overload show()
void show(String msg) {
System.out.println(msg + k);
}
}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A
}
}
A superclass reference variable can refer to a subclass object.

// Using run-time polymorphism.
class Figure {
double dim1;
double dim2;
Figure(double a, double b) {
dim1 = a;
dim2 = b;
}
double area() {
System.out.println("Area for Figure is undefined.");
return 0;
}
}
class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);
}
// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;
}
}
class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);
}
// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;
}
}
class FindAreas {
public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref;
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
figref = f;
System.out.println("Area is " + figref.area());
}
}

equals( ) method compares two objects. It returns true if the objects are equal, and false otherwise. The precise definition of equality can vary, depending on the type of objects being compared.toString( ) method returns a string that contains a description of the object on which it is called. Also, this method is automatically called when an object is output using println( ). Many classes override this method. Doing so allows them to tailor a description specifically for the types of objects that they create.class Student{
int rollno;
String name;
String city;
Student(int rollno, String name, String city){
this.rollno=rollno;
this.name=name;
this.city=city;
}
public String toString(){//overriding the toString() method
return rollno+" "+name+" "+city;
}
public static void main(String args[]){
Student s1=new Student(101,"Raj","lucknow");
Student s2=new Student(102,"Vijay","ghaziabad");
System.out.println(s1);//compiler writes here s1.toString()
System.out.println(s2);//compiler writes here s2.toString()
}
}
These classes offer a wide array of methods that allow you to fully integrate the primitive types into Java’s object hierarchy.
#### 12.java
// Demonstrate a type wrapper.
class Wrap {
public static void main(String args[]) {
Integer iOb = new Integer(100);
int i = iOb.intValue();
System.out.println(i + " " + iOb); // displays 100 100
}
}
Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed) from a type wrapper when its value is needed.
#### 13.java
// Demonstrate autoboxing/unboxing.
class AutoBox {
public static void main(String args[]) {
Integer iOb = 100; // autobox an int
int i = iOb; // auto-unbox
System.out.println(i + " " + iOb);// displays 100 100
}
}
// Using abstract methods and classes.
abstract class Figure {
double dim1;
double dim2;
Figure(double a, double b) {
dim1 = a;
dim2 = b;
}
// area is now an an abstract method
abstract double area();
}
class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);
}
// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;
}
}
class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);
}
// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;
}
}
class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
}
}